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Abstract

This paper introduces Schrödinger’s Sparsity, a Bayesian asset pricing framework

that models sparsity as a latent feature to be inferred rather than imposed. By com-

bining spike-and-slab priors with Bayesian updating, the model learns posterior

probabilities of sparsity in both mispricing (alphas) and factor loadings (betas).

Empirically, we find that alphas exhibit consistently greater sparsity than betas;

however, neither collapses to full sparsity nor full density. Instead, an interme-

diate level of sparsity emerges endogenously, varying systematically with asset

complexity, pricing difficulty, and macroeconomic regimes, and tightening during

economic recessions. By allowing complexity to arise endogenously, the frame-

work delivers interpretable, adaptive, and high-performing predictions, thereby

bridging the gap between sparse selection and dense shrinkage approaches.
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1 Introduction

Sparsity has become a foundational concept in high-dimensional modeling, en-

hancing interpretability, parsimony, and predictive performance. In empirical asset

pricing, the proliferation of risk factors and anomalies (e.g., Harvey et al., 2016; Green

et al., 2017) has motivated the adoption of sparse models to select a small number of

factors from a large pool of potential candidates. Empirical studies demonstrate that

sparse modeling effectively explains cross-sectional returns and improves the forecast-

ing of risk premia (e.g., Gu et al., 2020; Feng et al., 2020; Freyberger et al., 2020).

Recent research questions the universality of the sparsity assumption in characteristic-

based models. Giannone et al. (2021) show that Bayesian posteriors rarely concentrate

on sparse models, describing this as the ”illusion of sparsity.” Kozak et al. (2020) pro-

pose that the stochastic discount factor (SDF) may rely on a broader set of firm char-

acteristics beyond those typically captured by low-dimensional, ad hoc factor models.

Similarly, He et al. (2024) empirically test the hypothesis of sparse factor models and

find limited supporting evidence. Advances in high-dimensional modeling, including

nonlinear, latent, and deep learning models, show strong empirical performance in

empirical asset pricing.1 For example, Shen and Xiu (2024) find that Ridge regression

outperforms Lasso in weak-signal environments typical of return prediction, under-

scoring the benefits of denser regularization in such contexts.

Together, these findings highlight fundamental modeling philosophies in finan-

cial econometrics. Traditional approaches typically impose an ex ante commitment to

either sparsity (via L1 penalties) or density (via L2 shrinkage), shaping both model

structure and interpretability. For instance, implementations of Instrumented Princi-

pal Component Analysis (IPCA) typically adopt either a dense factor structure (Kelly

et al., 2019) or a sparse penalized specification (Bybee et al., 2023), each reflecting

distinct structural assumptions and advantages. This dichotomy raises an important

methodological question: Can the degree of sparsity be learned adaptively from the

1Recent studies include Lettau and Pelger (2020), Gu et al. (2021), Huang et al. (2022), Chen et al.
(2024), Avramov et al. (2023), Didisheim et al. (2023), Feng et al. (2024), and Kelly et al. (2024).
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data through Bayesian updating rather than being predetermined?

We introduce the concept of Schrödinger’s Sparsity, a framework for asset pric-

ing models that balances sparse and dense structures without committing to either

a priori. Statistical inference resolves this ambiguity by estimating the posterior dis-

tribution over model complexity, enabling a principled trade-off between parsimony

and explanatory power. In this framework, the prior acts as a wavefunction, encoding

beliefs about variable inclusion, which are updated using data to yield interpretable

posterior inclusion probabilities. This approach systematically navigates the tension

between model simplicity and explanatory richness.

To implement this idea, we extend the latent factor model of Geweke and Zhou

(1996) and Kelly et al. (2019) into a Bayesian framework with a hierarchical spike-

and-slab prior. The model captures the joint evolution of mispricings (alphas) and

factor loadings (betas) based on lagged firm characteristics. Observed returns update

the posterior distribution dynamically, analogous to wavefunction collapse in quan-

tum mechanics. This probabilistic mechanism ensures flexibility, allowing sparsity to

emerge naturally through learning rather than relying on fixed thresholds. The frame-

work accommodates diverse asset classes and investment horizons, enabling analysis

of sparsity dynamics, mispricing, and portfolio optimization. Its Bayesian structure

enhances interpretability by quantifying uncertainty in variable inclusion, balancing

explanatory power with parsimony.

Three key innovations distinguish our approach: (i) The prior inclusion probabil-

ity, analogous to an initial amplitude for variable presence, can be learned from data

or set exogenously. (ii) Sparsity patterns for alphas and betas are modeled separately

to reflect their distinct economic roles. (iii) The method accommodates both latent and

observable factor structures, including CAPM, Fama–French, and exogenous latent

factor specifications, within a unified conditional estimation framework.

Regularization techniques, such as Lasso and Elastic Net, play a pivotal role in

asset pricing, as they extract robust signals from high-dimensional data. By tuning pe-

nalization strength via cross-validation or information criteria, these methods adapt
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to diverse assets and market conditions. Their core advantage lies in reducing esti-

mation noise and isolating predictive characteristics, enhancing empirical modeling

of expected returns. However, once the penalty is set, the model structure becomes

fixed: variables are either included or excluded, with sparsity predetermined for the

sample. While effective, this approach does not address uncertainty in model com-

plexity.

Our Bayesian framework addresses the limitation of fixed sparsity assumptions

by treating sparsity as an inferable parameter. We employ probabilistic priors on pre-

dictor relevance, updating beliefs with data to derive economically interpretable pos-

terior inclusion probabilities. These probabilities reflect both the importance of the

predictor and the overall sparsity. By averaging across the model space, the approach

integrates sparse selection and dense shrinkage while capturing structural uncertainty.

This probabilistic treatment enhances risk–return profiles, especially under uncertain

sparsity levels.

Our empirical analysis highlights four central findings that demonstrate the prac-

tical relevance of the proposed approach. First, sparsity is neither extreme nor uni-

form. Across test assets and model specifications, posterior probabilities indicate that

alphas and betas exhibit intermediate sparsity levels rather than being fully sparse or

fully dense. Alphas are consistently sparser than betas, reflecting their distinct eco-

nomic roles. Moreover, alphas and betas display a complementary pattern: when

factor loadings are dense, mispricing is sparse, and vice versa.

Second, sparsity adapts to the complexity of assets and the difficulty of pricing

them. Simple test assets, such as ME/BM portfolios, require relatively few character-

istics and exhibit high sparsity. In contrast, more complex portfolios (e.g., Panel-Tree

portfolios or individual stocks) demand a broader set of predictors, resulting in lower

sparsity. Consistent with this, assets with higher Jensen’s alphas tend to exhibit denser

mispricing terms, while those with higher Sharpe ratios rely on denser factor loadings.

Third, sparsity is time-varying. During recessions, posterior inclusion probabil-

ities concentrate on a narrower set of characteristics, indicating that macroeconomic
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stress compresses the dimensionality of relevant predictors. During normal periods,

the model selects a more diverse set of characteristics, underscoring that model com-

plexity expands and contracts endogenously in response to the state of the economy.

Fourth, the patterns are robust across latent and observable factor models. Re-

placing latent factors with observable ones, such as CAPM or Fama–French factors,

preserves the broad tendency toward intermediate sparsity, though the exact values

depend on the chosen specification. Incorporating latent factors alongside observable

ones further improves performance by capturing signals that standard models miss.

Taken together, these findings demonstrate that intermediate sparsity systemat-

ically emerges from the data, varies with asset and macroeconomic conditions, and

improves both interpretability and predictive performance.

We place the sparsity-versus-density debate at the center of asset pricing by re-

casting it as a problem of probabilistic inference. Unlike prior work that imposes either

sparse or dense structures ex ante, our framework learns the posterior distribution of

sparsity itself. In doing so, we establish a first-order contribution that reshapes the

understanding of model complexity in finance.

Thus, our formulation moves beyond the existing machine learning literature on

sparse modeling (e.g., Chinco et al., 2019; Gu et al., 2020; Feng et al., 2020; Freyberger

et al., 2020; Cui et al., 2025) and recent debates about the virtue of complexity (e.g.,

Kelly et al., 2024; He et al., 2024). Whereas these important studies assess the relative

performance of sparse versus dense specifications, we reframe the problem by treating

sparsity itself as a latent quantity. In doing so, we allow the data to update flexible

priors on the degree of sparsity, thereby unifying sparse selection and dense shrinkage

within a single probabilistic framework.

This unification perspective also generalizes conditional factor models (e.g., Ja-

gannathan and Wang, 1996; Lettau and Ludvigson, 2001) by embedding them in a

Bayesian framework with time-varying, component-specific sparsity, offering a richer

account of dynamic economic conditions. It subsumes the Bayesian model selection

and shrinkage literature (e.g., Avramov, 2002; Barillas and Shanken, 2018; Chib et al.,
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2020) by shifting the focus from averaging across predefined models to endogenously

learning the degree of sparsity itself. Finally, it reconceptualizes regime-dependent

pricing, showing that model complexity compresses systematically under macroeco-

nomic stress (e.g., Ang and Kristensen, 2012).

The paper proceeds as follows. Section 2 introduces the model and its theoretical

framework. Section 3 describes the data sources and key characteristics. Section 4

reports the main empirical results. Section 5 analyzes sparsity variations across cross-

sectional and time-series dimensions. Section 6 extends the framework to observable

factor models. Section 8 concludes with a summary of findings and implications.

2 Methodology

2.1 Expected Return Dynamics

Sparsity in the cross section of expected asset returns can be studied within the

two main empirical asset pricing frameworks: beta pricing models and stochastic dis-

count factor (pricing kernel) models. For clarity and comparability, we build on the

conditional latent factor model of Kelly et al. (2019), which links firm characteristics

to time-varying covariances and provides a flexible structure for modeling asset re-

turns. We further develop this framework by formulating a Bayesian version with

a specially designed hierarchical prior that characterizes the probability distribution

over the sparsity of characteristics in both alphas and betas. This formulation allows

for a probabilistic assessment of both the relevance of individual characteristics and

the overall degree of sparsity in the cross section of expected returns.

We first establish the notation used throughout the analysis. Let ri,t denote the

excess return of asset i at time t, and define the cross section of excess returns at time

t as rt = (r1,t, . . . , rNt,t)
⊤, where Nt represents the number of assets available at time

t. The dataset spans T time periods and forms an unbalanced panel, with Nt varying

over time.

For each asset i, let Zi,t−1 = (zi,1,t−1, . . . , zi,L,t−1)
⊤ denote the L-dimensional vector

of lagged firm characteristics observed at time t− 1. The common asset pricing factors
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ft ∈ RK evolve over time and capture systematic sources of return variation across

assets. Our baseline specification treats the factors as latent; however, the framework is

flexible and can readily incorporate observable return-spread factors (e.g., the market

or Fama-French factors). In the empirical analysis, we primarily focus on latent factors,

while also examining a hybrid specification that combines latent and observed factors.

The conditional factor model specifies time-varying alphas and betas as functions

of firm characteristics:

ri,t = α(Zi,t−1) + β(Zi,t−1)
⊤ft + ϵi,t,

α(Zi,t−1) = α0 +α⊤
1 Zi,t−1,

β(Zi,t−1) = β0 + β1(IK ⊗ Zi,t−1).

(1)

Here, α0 is the potential common mispricing, α1 is an L × 1 vector of characteristic

loadings for the intercept (mispricing) component, β0 is a K × 1 vector of baseline

factor loadings, β1 is a K × KL matrix capturing how the loadings on each of the

K factors vary with the L lagged firm characteristics, and ft are latent factors. The

Kronecker product IK ⊗Zi,t−1 ensures that each factor loading responds flexibly to the

associated firm-specific information.

Our primary interest lies in the sparsity of the model, specifically in α1 and β1,

which determine which characteristics are relevant for explaining alphas and betas,

respectively. The prior specification used to infer the probability distribution over

sparsity is described in Section 2.2, while the case of fixed sparsity levels is discussed

in Section 2.3.

We formulate the model within a Bayesian framework that generalizes the un-

conditional latent factor structure of Geweke and Zhou (1996). For each period t, the

latent factors are assigned a normal prior with E[ft] = 0, E[ftf⊤t ] = I, and E[ϵt | ft] = 0.

The residuals are assumed to follow a multivariate normal distribution, ϵt ∼ N (0,Σ),

where Σ = diag(σ2
1, . . . , σ

2
Nt
) is a diagonal covariance matrix. We place conjugate

inverse-gamma priors on the residual variances of each asset: σ2
i ∼ IG (v0,i/2, S0,i/2).

Substituting the characteristic-based specifications of α and β into the return
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equation yields

ri,t = α0 +α⊤
1 Zi,t−1 + β⊤

0 ft + β⊤
1 [ft ⊗ Zi,t−1] + ϵi,t, (2)

which shows that the conditional factor model admits a pooled regression representa-

tion. Inference is performed within a Bayesian framework using Markov chain Monte

Carlo (MCMC), which generates draws from the conditional posterior distributions of

the model parameters and latent variables.

The model described above explicitly allows for mispricing through the intercept

terms. When only α0 ̸= 0, the model captures common mispricing. When α1 ̸= 0, mis-

pricing varies systematically with firm characteristics. A specification without mis-

pricing is obtained by omitting the alpha-related components, in which case Equation

(2) simplifies to:

ri,t = β⊤
0 ft + β⊤

1 [ft ⊗ Zi,t−1] + ϵi,t. (3)

As noted earlier, our framework flexibly accommodates both observable and la-

tent factors. Let ft = [fOt , f
L
t ] denote the vector of observable and latent factors, re-

spectively. The associated coefficient functions, β0 and β1, can be decomposed into

components corresponding to each factor type. When latent factors are included, the

model jointly learns the loading coefficients while treating fLt as unobserved variables

inferred from the data.

Model identification. We follow the identification strategy of Kelly et al. (2019). Let

Γα = [α0,α1] and Γβ = [β0,β1]. We impose the constraint Γ⊤
β Γβ = IK , ensure that

the unconditional second-moment matrix of ft is diagonal with descending diagonal

entries, and restrict the mean of ft to be non-negative. To preserve the structure of

Γβ , these constraints are applied separately to each factor. We additionally impose

Γ⊤
αΓβ = 01×K , which is enforced by regressing Γα on Γβ and replacing Γα with the

residual from this regression.

Next, we introduce a hierarchical spike-and-slab prior to identify the sparsity

structure of the characteristics influencing both alphas and betas, which are central
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to the model’s framework.

2.2 Priors Over Sparsity Structures

The prior consists of two components: a normal distribution and a point mass

at zero. Let dαi and dβi be binary indicators for the inclusion of the i-th coefficients in

the mispricing and factor loading functions, respectively. If dαi = 1, the corresponding

mispricing coefficient is included in the model and assigned a normal prior N (0, γ2
α),

which induces shrinkage without enforcing exact sparsity. If dαi = 0, it is excluded

from the alpha function via a spike prior that places an infinite mass at zero and fixes

the coefficient to zero. The variance hyperparameter γ2
α controls the degree of shrink-

age and follows an inverse-gamma prior:

γ2
α ∼ IG (Aγα/2, Bγα/2) . (4)

This normal prior acts as the Bayesian analogue of an L2 penalty (ridge regression)

due to its quadratic form.

Similarly, if dβi = 1, the corresponding factor loading coefficient is assigned a

normal prior N (0, γ2
β); if dβi = 0, the coefficient is excluded from the beta function via

a point mass at zero. The shrinkage variance γ2
β is also given an inverse-gamma prior:

γ2
β ∼ IG

(
Aγβ/2, Bγβ/2

)
. (5)

Each inclusion indicator follows a Bernoulli prior:

dαi ∼ Bernoulli(1− qα),

dβi ∼ Bernoulli(1− qβ),

(6)

where qα and qβ are sparsity probabilities. While standard spike-and-slab priors (Mitchell

and Beauchamp, 1988) treat these probabilities as fixed hyperparameters, we follow
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Giannone et al. (2021) in assigning independent Beta hyperpriors:

qα ∼ Beta(aqα , bqα),

qβ ∼ Beta(aqβ , bqβ),
(7)

allowing the overall level of sparsity to be inferred from the data.

Different choices of prior parameters reflect varying beliefs about model sparsity;

however, these beliefs are not binding, as the posterior distributions of qα and qβ are

shaped jointly by the priors and the observed data. Importantly, the posteriors of the

sparsity probabilities qα and qβ lie in the unit interval (0, 1), offering a probabilistic

rather than binary view of model complexity. This formulation avoids sharp thresh-

olding and instead quantifies uncertainty about sparsity. While one could compute

sparsity ex post by counting the number of nonzero coefficients (He et al., 2024), we

adopt a fully Bayesian approach that explicitly captures the posterior uncertainty sur-

rounding the sparsity probabilities qα and qβ .

2.3 Prior for Exogenous Fixed Sparsity Level

We also consider an alternative prior that fixes the sparsity level rather than learn-

ing it probabilistically from the data. This serves as a benchmark, reflecting the tradi-

tional approach that assumes either a sparse or dense structure ex ante. A common ex-

ample is Lasso regression, where the regularization parameter determines the degree

of penalization and, consequently, the implied sparsity level. Once this parameter is

set, typically via cross-validation or Bayesian information criterion, the resulting spar-

sity is fixed: stronger penalization yields a sparser model, while weaker penalization

results in a denser specification. However, such methods do not allow the sparsity

level to adapt flexibly to the data in a fully probabilistic manner.

For this fixed-sparsity benchmark, we impose a binding constraint on the total

number of included predictors by restricting the sum of the inclusion indicators dαi
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and dβi . Specifically, we adopt the following joint priors:

(dα1 , d
α
2 , · · · , dαL) ∼

[
L∏
i=1

Bernoulli(1− qα)

]
× I

(
L∑
i=1

dαi = Mα

)
,

(dβ1 , d
β
2 , · · · , d

β
L) ∼

[
L∏
i=1

Bernoulli(1− qβ)

]
× I

(
L∑
i=1

dβi = Mβ

)
,

(8)

where Mα ≤ L and Mβ ≤ L denote the fixed number of selected characteristics for

alphas and betas, respectively. These values directly control the sparsity level in the

model and are specified by the researchers.

To perform inference on all model parameters and latent factors, we draw samples

from the joint posterior distribution using a Gibbs sampling algorithm. Full details of

the sampling procedure are provided in the Appendix.

3 Data

Test Assets. We study the sparsity of asset pricing models using a broad range of

U.S. test assets, including individual stocks and constructed portfolios. Our database

covers monthly returns for 21,165 individual stocks from January 1980 through De-

cember 2024.2 Portfolios are constructed from these stocks, and we also consider a

representative subset of individual stocks as test assets.

We also utilize test assets based on the Panel-Tree (P-Tree) method of Cong et al.

(2025), which constructs 400 portfolios using a machine learning algorithm that grows

40 trees with 10 “leaves” each. P-Tree portfolios are particularly well-suited to our

sparsity analysis for two main reasons. First, they generalize multi-way characteristic

sorting while maintaining full transparency on the characteristics used in each port-

folio. Second, the portfolios are generated sequentially to expand the existing asset

space and enhance the Sharpe ratio. This sequential construction prioritizes informa-

tive characteristics early on, resulting in diminishing marginal contributions from later

2We apply standard filters following Fama and French (1992), including: (1) restricting the sample
to stocks listed on the NYSE, AMEX, or NASDAQ for at least one year; (2) selecting firms with CRSP
share codes of 10 or 11; and (3) excluding stocks with negative book equity or lagged market equity.
The sample begins in 1980 to ensure sufficient IBES coverage.
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portfolios. As a result, it naturally reveals how sparsity evolves with increasing model

complexity.

To mitigate look-ahead bias, we follow Cong et al. (2025) in constructing the P-

Tree portfolios using data from 1980–1989. We then fix the tree structure and apply

it to generate test assets from January 1990 to December 2024, which forms the main

sample for our empirical analysis. For consistency, the sample period for all other test

assets is also limited to January 1990 through December 2024, yielding 420 months.

Our primary test assets consist of the first 100 P-Tree portfolios, which exhibit higher

Sharpe ratios compared to the subsequent 300 portfolios. Figure A.2 compares the

cross-sectional dispersion of 100 P-Tree portfolios with the standard 25 ME/BM port-

folios, highlighting the greater dispersion of the former.

In addition to P-Tree portfolios, we examine three commonly used sets of test as-

sets: (i) the standard 25 ME/BM portfolios, (ii) 360 bivariate-sorted portfolios (Bi360),3

(iii) 610 univariate-sorted portfolios (Uni610),4 based on individual characteristics.

Characteristics. We compile 61 firm-level characteristics, grouped into eight themes:

size, value, investment, momentum, profitability, liquidity, volatility, and intangibles.

Table A.1 provides detailed descriptions. Each characteristic is standardized cross-

sectionally to lie within the range [−1, 1].

All portfolio returns and characteristics are value-weighted averages of their con-

stituent stocks. The characteristics are then standardized within each portfolio class.

Figure A.3 illustrates the raw (pre-standardization) values of selected characteristics

for the P-Tree portfolios.

Regime. To explore how model sparsity evolves across macroeconomic conditions,

we incorporate regime variation. For structural regimes, we follow Smith and Tim-

mermann (2021), who identify significant breakpoints in the U.S. stock market and

provide corresponding calendar dates. These serve as exogenous partitions for our

regime-specific analyses.

3Constructed under a 2 × 3 × 60 scheme. Two groups remain empty due to the absence of stock
assignments; dependent sorting is applied in these cases.

4Constructed with 61 characteristics and 10 breakpoints per characteristic, yielding 610 portfolios.
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Additionally, we use the real-time Sahm Rule Recession Indicator from FRED. We

group all months identified as recessionary into a single regime and contrast model

behavior during these periods with non-recessionary (normal) times.

4 Schrödinger’s Sparsity

A central objective of this paper is to adopt a probabilistic perspective on model

sparsity. Rather than assuming the model to be either sparse or dense, we adopt a

fully probabilistic view of sparsity and allow the degree of sparsity to be learned from

the data. In short, “sparsity” is an object of inference.

4.1 Learning Sparsity Matters: Mispricing and Sparsity

We begin the analysis with a representative set of 100 P-Tree test assets. This

choice balances economic richness and transparency: P-Tree portfolios span a wide

cross section with high dispersion and interpretable construction characteristics. Start-

ing from this tractable yet informative set allows us to (i) compare the posterior spar-

sity of mispricing and factor loadings and (ii) assess the gains from learning (qα, qβ)

relative to fixed-sparsity and dense benchmarks. Broader asset classes and regime

analyses follow in Section 5.

Asset Pricing Evaluation Before examining the nature of sparsity across model spec-

ifications and test assets, we begin by evaluating whether enabling the model to learn

sparsity through a hierarchical spike-and-slab prior delivers an economically mean-

ingful reduction in mispricing. In asset pricing, mispricing is the principal manifes-

tation of model misspecification; a procedure that merely reduces estimation vari-

ance without materially lowering the magnitude of mispricing does not deliver an

economic improvement. Guided by this objective, we assess performance along two

complementary dimensions: (i) an outcome dimension that measures residual pricing

errors in the return space, and (ii) a structural dimension that gauges the strength of

the parameter channel that generates mispricing within the model. This distinction

separates observed pricing errors from the mechanism that generates them, prevent-
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ing variance shrinkage from being mistaken for an economic improvement. We adopt

a Bayesian posterior-comparison framework, which enables transparent probability

statements about model dominance and effect sizes, rather than relying on frequentist

significance tests.

The first metric evaluates the overall magnitude of mispricing across all test as-

sets. Within our model, mispricing is decomposed into two components: a constant

intercept term, α0, which captures persistent pricing errors common across assets, and

a vector of characteristic-based intercepts, α1, which reflects systematic mispricing re-

lated to firm characteristics. For each posterior draw g from the MCMC algorithm,

we compute asset-level mispricing as α̂
(g)
it = α

(g)
0 + α

(g)⊤
1 Zi,t−1, and summarize the

aggregate mispricing using

α̂(g) =

√√√√ 1

N

N∑
i=1

(
T∑
t=1

α̂
(g)
it

)2

.

This computation yields a distribution over posterior draws, providing not only a

point estimate but also a full characterization of the uncertainty surrounding the mag-

nitude of mispricing. By examining the shape and location of the posterior distribution

under different model specifications, we assess the effect of sparsity priors on pricing

performance without relying on frequentist hypothesis tests.

The second metric quantifies the overall magnitude of the mispricing coefficients,

following the approach of (Kelly et al., 2019). Specifically, we examine the scale of

coefficients for mispricing Γα = [α0,α1] by computing

W (g)
α = Γ̂(g)′

α Γ̂(g)
α ,

for each posterior draw g from the MCMC algorithm. This scalar captures the squared

norm of the coefficient vector, providing a summary measure of how large the mispric-

ings are, conditional of the included characteristics. Evaluating W
(g)
α across posterior

draws yields its full posterior distribution, which allows us to compare the magnitude
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and uncertainty of mispricing across models.

We evaluate the impact of imposing a hierarchical spike-and-slab prior on mis-

pricing estimates by comparing three model specifications: (i) a sparse Bayesian spec-

ification (S) that employs a hierarchical spike-and-slab prior; (ii) a non-sparse Bayesian

specification (NS) with a conjugate Normal prior and no variable selection; and (iii) the

standard IPCA model of Kelly et al. (2019). Figure 1 presents the posterior distribu-

tions of the aggregate mispricing measure α and the norm of the mispricing-related

coefficients, Wα, under each specification. Since IPCA is a frequentist method, it yields

point estimates only; these appear as vertical lines in the figure, without associated

posterior uncertainty. We further test whether a given characteristic systematically

accounts for the mispricing component. Details appear in Appendix A.I.

Figure 1: Posterior Mispricing under Model Specifications

This figure illustrates the posterior density (or value) of the mispricing component α and norm of coef-
ficients Wα under different model specifications. Panel (a) reports the posterior distributions or values
of mispricing across different numbers of latent factors and model specifications. Panel (b) presents the
posterior distributions or values of Wα. Black, red, and blue curves correspond to models with 1, 3, and
5 latent factors (LF), respectively. Solid lines depict our sparsity-aware specification (S), dotted lines de-
pict our specification without sparsity (NS), and dashed lines refer to the IPCA method. For parsimony,
in the sparsity-enabled specifications, we place Beta(5, 5) priors on both qα and qβ . Since IPCA delivers
a point estimate, we indicate its value with a vertical line. Considering that several posterior densities
attain relatively high values, we truncate the y-axis to facilitate a clearer comparison of the shapes of
the remaining distributions.
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Figure 1 presents three consistent strands of evidence from the posterior compar-

ison: empirical existence, posterior dominance, and mechanism.
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First, across specifications and factor counts, the two mispricing measures are

posteriorly distinct from zero; the high-density posterior intervals for both indicators

exclude zero. Joint evidence on the outcome and structural dimensions rules out an

estimation-noise explanation. If variance were merely reduced without addressing

mispricing, the distribution of estimated alpha would primarily exhibit scale shrink-

age rather than a shift in location.

Second, holding the number of factors fixed, the sparsity-learning Bayesian spec-

ification (S) improves upon the dense Bayesian (NS) in both location and shape: the

posteriors for metrics shift materially to the left with thinner tails and minimal over-

lap, indicating that sparsity learning delivers not only narrower uncertainty but also a

substantive reduction in the mispricing strength. IPCA provides point estimates only

and typically lies to the right of S, often beyond the central mass of NS, consistent

with larger residual mispricing and coefficient norms when model uncertainty is not

characterized probabilistically and parameters do not receive selective shrinkage.

Moreover, as the number of factors increases, the posteriors for the two metrics

move toward zero and become more concentrated, reflecting the complementarity be-

tween factor absorption and sparsity-induced shrinkage. Additional latent factors ab-

sorb a greater share of systematic variation, limiting the scope for misallocating risk

exposure into alpha. The spike-and-slab prior then selects weak-signal characteris-

tics and imposes disciplined shrinkage on marginal terms, while avoiding excessive

penalization of salient components. The decline in mispricing thus arises from the

coordinated action of both channels under posterior learning.

Taken together, the evidence supports the central claim of Schrödinger’s sparsity:

the mispricing channel is neither empty nor full, but adapts within an interior region

through posterior learning. As model capacity increases, adaptive shrinkage works

jointly with factor absorption to compress mispricing to economically acceptable lev-

els. By contrast, ignoring sparsity or ignoring model uncertainty materially weak-

ens this compression, yielding systematically higher mispricing and larger coefficient

norms at the point-estimate level.
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Probability of Sparsity Having verified the asset-pricing performance of our ap-

proach with respect to mispricing, we next study posterior learning of sparsity itself

by treating the sparsity probabilities of the mispricing component and the factor load-

ings (denoted qα and qβ) as objects of inference. This analysis serves three purposes:

(i) to characterize the endogenous allocation of model complexity across the mispric-

ing and risk-exposure channels; (ii) to align statistical improvements with economic

content by asking whether more sparse is equivalent to better; and (iii) to identify the

empirical footprint of “Schrödinger’s sparsity,” whereby sparsity neither collapses to

an all-sparse corner nor expands to an all-dense corner but instead adapts to an inte-

rior region dictated by the data.

Panel A of Table 1 reports three sets of results across varying prior means for the

sparsity probabilities (qα, qβ) and different numbers of latent factors (K): (i) the cross-

sectional R2, (ii) the Sharpe ratio of the tangency portfolio formed from the estimated

latent factors, and (iii) the posterior means of the sparsity probabilities for mispricing

(qα) and factor loadings (qβ). The cross-sectional R2 is computed as:

CSR2 = 1−

∑N
i=1

(
1
Ti

∑Ti

t=1(ri,t − r̂i,t)
)2

∑N
i=1

(
1
Ti

∑Ti

t=1(ri,t − β̂iMktRFt)
)2 , (9)

where r̂i,t denotes the predicted mean return, β̂i is the estimated market beta, and

MktRF stands for the market factor.

We summarize the main findings from Panel A below. First, across prior-mean

combinations and factor counts K, the posterior sparsity probabilities consistently fall

between fully sparse (near 0) and fully dense (near 1). Both the mispricing coefficients

(α1) and factor loadings (β1) exhibit intermediate levels of sparsity, with mispricing

generally being more sparse. For example, under a symmetric Beta prior with mean

0.5, the model with K = 5 yields posterior means of 0.79 for qα and 0.50 for qβ . These

posterior probabilities and associated model performance metrics remain stable across

diverse prior specifications, demonstrating that the results are primarily data-driven

and robust.
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Table 1: Model Performance Under Different Priors

This table reports model results under various prior assumptions for sparsity on P-Tree 100 test assets,
including cross-sectional R2, Sharpe ratio from the latent factor tangency portfolio, and posterior means
of sparsity levels. K indicates the number of latent factors. Panel A’s row labeled “(qα prior mean, qβ
prior mean)” corresponds to unconstrained sparsity settings, where priors on qα and qβ indicate three
Beta distributions: Beta(9, 1), Beta(5, 5), and Beta(1, 9), with means of 0.9, 0.5, and 0.1, respectively.
Panel B restricts the number of characteristics driving α1 and β1. Specifically, Mα limits the number
of characteristics influencing α1, while Mβ restricts the number of characteristics affecting each fac-
tor loading β1,k. Panel C reports results from our Bayesian framework without sparsity constraints,
whereas Panel D presents estimates obtained via the standard (dense) IPCA method.

CSR2 TP. SR (qα, qβ)

K = 1 K = 3 K = 5 K = 1 K = 3 K = 5 K = 1 K = 3 K = 5

Panel A: Unrestricted # selected chars.

(qα prior mean,
qβ prior mean)

0.9,0.9 29.2 43.7 58.9 0.34 0.76 0.65 0.66,0.62 0.83,0.57 0.93,0.64
0.5,0.9 29.4 43.4 57.0 0.35 0.78 0.88 0.51,0.62 0.68,0.60 0.77,0.64
0.1,0.9 29.4 43.1 56.6 0.35 1.05 0.86 0.37,0.62 0.53,0.60 0.63,0.66
0.9,0.5 29.3 44.3 59.9 0.34 0.81 0.52 0.66,0.47 0.82,0.47 0.93,0.50
0.5,0.5 29.5 42.4 58.8 0.35 1.00 0.68 0.52,0.47 0.69,0.43 0.79,0.50
0.1,0.5 29.5 43.6 58.1 0.35 1.19 0.84 0.37,0.47 0.53,0.46 0.64,0.49
0.9,0.1 29.5 46.9 58.3 0.34 1.15 0.97 0.66,0.31 0.83,0.31 0.92,0.33
0.5,0.1 29.6 42.5 57.9 0.35 1.00 0.87 0.52,0.31 0.69,0.30 0.79,0.34
0.1,0.1 29.7 45.6 53.7 0.35 1.38 0.86 0.37,0.31 0.54,0.31 0.62,0.35

Panel B: Fixed # selected chars.

(Mα,Mβ)

2,2 25.4 49.3 48.4 0.44 1.10 0.95 / / /
10,2 28.0 51.1 50.0 0.37 0.56 0.87 / / /
18,2 25.2 46.9 37.8 0.32 0.77 0.67 / / /
2,10 28.8 50.9 59.6 0.42 0.59 0.90 / / /

10,10 29.6 38.3 41.1 0.35 0.87 1.07 / / /
18,10 27.2 40.9 39.5 0.32 0.59 0.87 / / /
2,18 29.8 54.9 56.1 0.43 0.64 0.89 / / /

10,18 29.9 34.5 51.0 0.36 1.02 1.10 / / /
18,18 27.5 39.3 42.1 0.33 0.54 0.92 / / /

Panel C: No sparsity
(Mα,Mβ) (20,20) 29.9 36.9 45.2 0.35 0.57 0.95 / / /

Panel D: IPCA
(Mα,Mβ) (20,20) 21.1 30.3 37.8 0.32 0.40 0.57 / / /

Second, mispricing and factor loading components exhibit systematically differ-

ent sparsity patterns, with mispricing showing greater sparsity. For example, across

all K = 5 specifications in Panel A, the posterior mean of qα consistently exceeds 0.6

and reaches as high as 0.9, while the corresponding qβ values remain uniformly lower.

This difference reflects the theoretical complementarity between mispricing and factor

loadings. Once a characteristic meaningfully contributes to the factor structure, its in-

cremental explanatory role in mispricing diminishes. Consequently, lower sparsity in

factor loadings implies that a broader set of characteristics is used to explain expected
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returns. This leaves less scope for persistent pricing errors, resulting in a sparser α1.

Third, sparsity patterns vary systematically with the number of latent factors K.

For instance, under a symmetric prior with (qα, qβ) means of (0.5, 0.5), the posterior

estimates evolve from (0.52, 0.47) at K = 1, to (0.69, 0.43) at K = 3, and to (0.79, 0.50)

at K = 5. As K increases, the posterior probability of sparsity for factor loadings (qβ)

remains low or declines, while the sparsity of mispricing (qα) rises substantially. This

pattern suggests that with more latent factors absorbing information from characteris-

tics, the role of the mispricing component becomes increasingly limited. Moreover, the

spike-and-slab prior filters weak signals via spike selection, applies disciplined group

shrinkage to marginal terms, and avoids over-penalizing salient components. These

forces operate jointly through two complementary channels, namely factor absorption

and sparsity-induced shrinkage, and produce a structural compression of mispricing.

Importantly, this trend holds across a wide range of prior configurations, reinforcing

the notion that the results are data-driven.

Fourth, we find that model performance, as measured by both cross-sectional R2

and the Sharpe ratio, is robust across various specifications. For example, at K = 3,

the cross-sectional R2 ranges from 42.4 to 46.9, while the Sharpe ratio tends to im-

prove under denser priors on β1. More broadly, model fit improves substantially with

larger K: R2 increases from roughly 29% at K = 1 to over 55% at K = 5. When the

factor structure is limited (i.e., small K), performance gains primarily come from the

mispricing channel. In contrast, with richer factor structures (larger K), explanatory

power shifts toward the factor loadings.

As demonstrated, the sparsity probabilities for mispricing and factor loadings

significantly depend on the number of latent factors. This prompts a natural inquiry:

what are the consequences of ignoring this “Schrödinger’s sparsity” and instead im-

posing sparsity exogenously? Panel B of Table 1 presents results from fixed-sparsity

models, where the number of characteristics driving α1 and β1 is constrained by

(Mα,Mβ). We examine nine combinations of inclusion sizes. For a given number of

latent factors, model performance varies substantially with the imposed sparsity level.
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In particular, performance is non-monotonic in both Mα and Mβ : models that are either

too sparse (e.g., M = 2) or too dense (e.g., M = 18) often underperform. For instance, at

K = 3, the Sharpe ratio declines from 1.10 when (Mα,Mβ) = (2, 2) to just 0.54 when

both are set to 18.

Compared to Panel A, which endogenously learns sparsity from the data, Panel B

shows that fixed-sparsity models perform best when their imposed (Mα,Mβ) values

align closely with the posterior sparsity levels learned under the probabilistic frame-

work. For example, at K = 5, the best-performing probabilistic model implies sparsity

near (1, 10), while the best fixed model occurs at (2, 10); for K = 3, the optimal pos-

terior sparsity is around (4, 14), while the top-performing fixed case is (2, 18). This

inverted-U pattern, along with the consistency with Panel A, highlights the impor-

tance of adaptively learning sparsity from the data, rather than imposing it ex ante.

Finally, models with probabilistic sparsity consistently outperform fully dense

Bayesian models and the frequentist IPCA benchmark. Panels C and D of Table 1

highlight these comparisons. At K = 5, the cross-sectional R2 is 45.2% for the dense

Bayesian model and 37.8% for IPCA, while the corresponding Sharpe ratios are 0.95

and 0.57. Both metrics are substantially lower than those achieved by the probabilistic

sparsity model. By treating sparsity as a latent parameter rather than imposing full

density or hard-thresholded sparsity, the model can dynamically adjust to the under-

lying structure of the data. This approach delivers superior statistical and economic

performance by enabling more robust learning about sparsity.

Taken together, the evidence supports the central proposition of ”Schrödinger’s

sparsity”: sparsity is a learnable latent quantity that adapts with both the number of

factors and the information in the sample. Moreover, alpha and beta exhibit stable

asymmetry and complementarity in their sparsity structure.

4.2 Models without Mispricing

Prior results demonstrate that incorporating the mispricing channel enables pos-

terior learning of sparsity, thereby enhancing pricing performance. A natural coun-

terfactual follows: if mispricing were excluded and the entire explainable component
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of expected returns were assigned to the factor structure, how would information be

reallocated? We further assess model performance in the absence of mispricing by esti-

mating conditional latent factor models that attribute all variation in expected returns

to the factor structure.

Figure 2: Characteristics Importance in Different Test Assets (without Mispricing)

This figure depicts selection probabilities of characteristics across test assets. Panel (a) shows the prob-
ability of selection for explaining factor loadings and the associated β1,i estimates. For brevity, results
are shown for the first latent factor only. Each cell displays the selection probability, with color intensity
reflecting its magnitude.
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Table 2 reports results across a range of prior specifications for β1, enabling us

to examine the robustness of sparsity patterns in factor loadings. We switch off the

α channel and estimate a latent-factor model in which expected returns are fully ex-

plained by loadings and latent factor risk premia. Specifically, we consider factor di-

mensionalities K ∈ {1, 3, 5}. In Panel A, we impose Beta priors on qβ with means

0.1/0.5/0.9. In Panel B, we exogenously constrain the number of admissible charac-

teristics per loading, Mβ ∈ {2, 10, 18}. This analysis clarifies the extent to which firm

characteristics inform the factor structure when mispricing is omitted.
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Table 2: Model Performance under Different Priors (without Mispricing)

This table reports model results under various prior assumptions for sparsity, including cross-sectional
R2, Sharpe ratio from the latent factor tangency portfolio, and the posterior mean of the sparsity level.
K indicates the number of latent factors. The priors on qβ indicate three Beta distributions: Beta(9, 1),
Beta(5, 5), and Beta(1, 9), with means of 0.9, 0.5, and 0.1, respectively. Panel B restricts the number of
characteristics driving beta: Mβ limits the characteristics affecting each factor loading β1,k.

CSR2 TP. SR qβ

K = 1 K = 3 K = 5 K = 1 K = 3 K = 5 K = 1 K = 3 K = 5

Panel A: Unrestricted # selected chars.

qβ prior mean
0.9 20.4 52.8 58.1 0.51 0.73 0.69 0.62 0.59 0.60
0.5 20.5 53.2 58.3 0.51 0.73 0.99 0.48 0.43 0.50
0.1 20.6 53.6 60.8 0.51 0.73 0.98 0.32 0.27 0.29

Panel B: Fixed # selected chars.

Mβ

2 15.6 49.5 50.4 0.52 0.83 0.74 / / /
10 20.1 52.1 58.5 0.51 0.75 0.84 / / /
18 19.9 53.8 59.6 0.51 0.44 0.59 / / /

Panels A and B of Table 2 show that when the number of latent factors is limited

(e.g., K = 1), models that learn characteristic relevance from the data outperform those

with fixed inclusion sizes. However, this advantage diminishes as K increases, with

richer models eventually outperforming sparser ones regardless of whether sparsity

is learned or imposed.

Comparing Tables 1 and 2 reveals that excluding mispricing leads to lower pos-

terior sparsity in factor loadings. For example, with a prior mean of 0.9 and K = 5, qβ

falls from approximately 0.66 to 0.60, reflecting the shift in explanatory burden from

α1 to β1. As a result, factor loadings become denser to accommodate the omitted

pricing component. While cross-sectional R2 remains high, reaching 60.8% without

mispricing, the Sharpe ratios decline notably, with a maximum of 0.99 compared to

over 1.3 when α1 is included. This suggests that although models without mispricing

can explain average returns, they deliver weaker economic performance, revealing a

trade-off between density and fit, as well as between the Sharpe ratio and interpretabil-

ity. Moreover, posterior qβ tends to stabilize at relatively low levels (0.27–0.62) across

priors, indicating the limited viability of sparse representations in this setting.

Panel B also reveals a familiar inverted-U pattern: when K = 1, fixed-sparsity

models with very low or very high Mβ tend to underperform those with intermediate

inclusion sizes. This mirrors the pattern observed in Table 1 and further supports the
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need to avoid rigid sparsity assumptions. 5 As K increases, the capacity of the loading

channel to absorb information rises, the constraint imposed by fixed sparsity weakens,

and relatively denser specifications become increasingly dominant. This dominance

does not stem from superior uncertainty management; it reflects a greater ability to

accommodate higher dimensionality.

Overall, the probabilistic framework performs best when both α1 and β1 are ac-

tive and learned jointly. A probabilistic framework that incorporates mispricing can

achieve higher overall performance without sacrificing the Sharpe ratio by exploiting

a channel-level division of labor, specifically by utilizing sparser alpha and richer beta.

Conversely, forcing alpha equal to zero pushes structural differences into beta, which

leads to overparameterization and a decline in trading value.

5 Schrödinger’s Sparsity Everywhere

We have documented the presence of Schrödinger’s Sparsity in the analysis of

the 100 P-Tree test assets: the posterior probability of sparsity generally lies between

the extremes of a highly sparse and a fully dense model. Furthermore, mispricing

components consistently exhibit higher sparsity probabilities than factor loadings. In

this section, we examine how these patterns vary across different settings. Section

5.1 analyzes alternative test assets and explores how their “complexity” relates to

model-implied sparsity. Section 5.2 investigates the time variation in sparsity across

macroeconomic regimes and evaluates how the estimated mispricing and factor load-

ings evolve over time and across asset classes.

5.1 Test Assets and Sparsity

Thus far, we have examined the probability of sparsity using the 100 P-Tree test

assets. However, it is well recognized that the choice of test assets plays a pivotal role

in asset pricing analysis. It determines the spanning and identifiability of the return

space, and in turn, influences how model complexity is allocated across mispricing

5Table A.3 reports OOS performance for specifications that exclude mispricing. Models that estimate
the sparsity probability endogenously consistently outperform counterparts that fix the sparsity level
exogenously.
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and factor loadings. We hypothesize that model sparsity systematically varies with

the complexity and construction of test assets. Simpler portfolio sorts, such as the

25 ME/BM portfolios, rely on fewer characteristics to explain returns. In contrast,

more complex or heterogeneous test assets, such as those constructed via the P-Tree

framework (Cong, Feng, He, and He, 2025), may require a broader set of predictors

due to their increased dimensionality.

To examine this hypothesis, we apply our model to three distinct asset groups:

(i) P-Tree portfolios constructed with varying numbers of leaves; (ii) individual stocks

split by average market equity (Big 500 vs. Small 500);6 and (iii) benchmark portfolios

including the 25 ME/BM, Bi360, and Uni610 sets. Table 3 reports the posterior sparsity

probabilities, cross-sectional R2, and Sharpe ratios across these settings under varying

prior specifications.

Table 3: Sparsity for Different Test Assets

This table reports performance statistics across various test assets, focusing on models with three latent
factors to ensure comparability. The analysis encompasses portfolios with varying numbers of P-Tree
assets (Panel A), two groups of individual stocks with equal sample sizes but differing average market
equity value (Panel B), and three widely used portfolio sets: ME/BM 25, Bi360, and Uni610 (Panel C).
The reported metrics include cross-sectional R2, tangency portfolio Sharpe ratio, and estimates of qα
and qβ .

prior mean: (0.5, 0.5) prior mean: (0.9, 0.9) prior mean: (0.1, 0.1)
CSR2 TP. SR (qα, qβ) CSR2 TP. SR (qα, qβ) CSR2 TP. SR (qα, qβ)

Panel A: P-Tree
100 42.4 1.00 0.69,0.43 43.7 0.76 0.83,0.57 45.6 1.38 0.54,0.31
200 50.9 1.09 0.60,0.37 52.3 1.13 0.75,0.53 50.2 1.06 0.46,0.21
400 45.2 0.49 0.54,0.32 43.7 0.60 0.68,0.48 43.3 0.80 0.39,0.04

Panel B: Ind. Stock
Big500 31.4 0.80 0.61,0.29 31.5 0.63 0.75,0.49 32.9 0.65 0.43,0.09

Small500 3.9 3.64 0.49,0.38 5.7 10.75 0.62,0.55 2.4 2.26 0.35,0.23

Panel C: Others
ME/BM25 33.6 0.25 0.80,0.50 31.0 0.31 0.93,0.64 42.0 0.29 0.64,0.36

Bi360 7.8 1.03 0.50,0.20 10.8 0.40 0.65,0.33 5.9 0.65 0.36,0.04
Uni610 48.0 0.61 0.44,0.20 47.8 0.60 0.58,0.33 47.9 0.71 0.30,0.05

We begin with the baseline prior mean of 0.5 for both qα and qβ . As the num-

6We begin by selecting stocks with at least ten years of return data. From this group, we rank firms by
average market equity and form two equally sized groups: the “Big 500” (ranks 1–500) and the “Small
500” (ranks 501–1000). Small-cap stocks are generally more difficult to price due to lower liquidity and
higher idiosyncratic risk.

23



ber of P-Tree portfolios increases from 100 to 400, the posterior mean of the sparsity

probability in factor loadings declines from 0.43 to 0.37 and then to 0.32. Similarly, the

mispricing sparsity probability drops from 0.69 to 0.60 and then to 0.54. This pattern

suggests that as more test assets are added to span the efficient frontier, the model

requires a richer set of characteristics to explain expected returns, resulting in lower

overall sparsity. Consistent with the diminishing marginal contribution of additional

portfolios to the tangency Sharpe ratio, the decline in sparsity also exhibits dimin-

ishing marginal effects. As the test-asset universe becomes sufficiently granular, the

marginal independent information contributed by additional assets diminishes, and

the required intensity of desparsification can be correspondingly relaxed.

Next, we examine whether pricing difficulty influences sparsity while keeping

the asset class and number of test assets constant. Panel B of Table 3 compares two

groups of individual stocks, each comprising 500 securities: the 500 Big includes the

largest firms by market equity, while the 500 Small consists of stocks ranked 501st to

1000th. For individual stocks, the underlying factor structure is latent and potentially

complex compared to P-Tree portfolios, where construction characteristics are known.

Despite this complexity, we find notable differences in sparsity estimates. For factor

loadings, the posterior mean of qβ is 0.29 for large-cap stocks and 0.38 for small-cap

stocks, indicating a denser factor structure for larger firms. In contrast, the mispricing

sparsity probability (qα) is 0.61 for the Big 500 and decreases to 0.49 for the Small 500,

suggesting greater pricing difficulty among smaller firms.

These findings suggest that mispricing becomes less prevalent when transitioning

from large- to small-cap stocks, potentially due to the greater cross-sectional hetero-

geneity of smaller firms, which makes them more susceptible to idiosyncratic pricing

errors. This is consistent with prior evidence that small-cap stocks exhibit higher id-

iosyncratic volatility (e.g., Campbell et al., 2001), lower liquidity (e.g., Antweiler and

Frank, 2004), and greater limits to arbitrage (e.g., Baker and Wurgler, 2006). Interest-

ingly, the opposite holds for factor loadings: the model selects fewer characteristics to

explain β1 for small-cap stocks, possibly reflecting their lower exposure to systematic
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risk or more concentrated pricing channels (e.g., Daniel and Titman, 1997).

Finally, this pattern extends to other commonly used portfolio-based test assets.

Panel C of Table 3 shows that the posterior sparsity probability for factor loadings is

0.50 for the 25 ME/BM portfolios, compared to 0.20 for the Bi360 and Uni610 port-

folios. The ME/BM portfolios are constructed using only two firm characteristics,

whereas the Bi360 and Uni610 portfolios incorporate a significantly richer set of char-

acteristics. The lower sparsity observed for the latter thus reflects the model’s need

to access a broader array of characteristics to capture return variation. These results

reinforce the idea that the sparsity of the estimated factor structure closely tracks the

complexity and informational richness of the test assets.

Overall, Table 3 supports our hypothesis, demonstrating that the structure and

complexity of the test assets play a pivotal role in shaping the degree of sparsity, in-

terpretability, and explanatory power of asset pricing models. The results underscore

that sparsity is not an inherent model attribute but rather one that adjusts to the infor-

mational richness and design of the test assets. Consequently, effective asset pricing

demands a careful balance between parsimony and fit, while appropriately reflecting

the complexity of the underlying return-generating process.

Alpha and Sharpe Ratio versus Sparsity. We have shown above that posterior spar-

sity probabilities differ across test assets. We now adopt a more granular and eco-

nomically grounded approach to evaluating pricing difficulty and its implications for

model sparsity. A natural question is, when a test-asset set is harder to price, does the

model need to relax constraints in the mispricing or loadings, thereby exhibiting lower

posterior sparsity?

Specifically, we use two empirical proxies: the absolute value of Jensen’s alpha

and the Sharpe ratio of the tangency portfolio. The former measures the magnitude of

unconditional mispricing, corresponding to pricing difficulty in the mispricing itself,

whereas the latter measures the strength of tradable risk compensation, corresponding

to pricing difficulty in the factor components. To implement this, we sort the Bi360,

Uni610, and P-Tree400 test assets into 6, 10, and 8 groups, respectively, according to the
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size of their CAPM alphas, resulting in group sizes of 60, 61, and 50 portfolios. For each

group, we compute the tangency portfolio’s Sharpe ratio and estimate our model with

K = 5 latent factors to obtain posterior estimates of the sparsity probabilities qα and

qβ . Figure 3 presents the relationship between these learned sparsity probabilities —

qα for mispricing and qβ for factor loadings — and the associated measures of pricing

difficulty.

Figure 3: Sparsity Levels and Pricing Difficulty of Test Assets

This figure illustrates the relationship between sparsity in alphas and betas and the pricing difficulty of
test assets, as measured by absolute alpha and Sharpe ratio. Panel (a) depicts the relationship between
qα and the average absolute α of test assets. Panel (b) presents the relationship between qβ and the
Sharpe ratio of the test assets. In both panels, circles, triangles, and squares denote bi-sorted, uni-
sorted, and P-Tree portfolios, respectively.
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Both panels of Figure 3 reveal a consistent and economically intuitive pattern:

test assets with higher absolute Jensen’s alpha exhibit lower posterior sparsity in the

mispricing component (qα), while those with higher tangency portfolio Sharpe ratios

exhibit lower sparsity in factor loadings (qβ).7 Intuitively, when a test asset displays

a large unconditional alpha, the model requires more flexibility in the alpha channel

to account for persistent pricing errors, which leads to a denser α1. Conversely, high

Sharpe ratio portfolios reflect richer exposure to priced risks, prompting the model

to draw on a broader set of characteristics to capture time-varying betas, thereby re-

ducing sparsity in β1. The monotonic nature of these relationships — observed across
7Figure A.4 presents analogous results for the restricted model, demonstrating consistent relation-

ships observed in the absence of mispricing.
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bi-sorted, uni-sorted, and P-Tree portfolios — underscores that sparsity is not fixed

but adapts systematically to pricing difficulty. These results provide direct visual ev-

idence for our central thesis: the degree of sparsity should be treated as an object of

inference, not imposed ex ante.

Characteristics Importance. We aim to identify the specific characteristics that drive

mispricing and factor loadings. Figure 4 reports the posterior inclusion probabilities

alongside the corresponding coefficient estimates — α1,i for mispricing and β1,i for

factor loadings — for each characteristic across the various test asset sets.

Several characteristics are consistently selected for factor loadings across all test

asset sets, exhibiting posterior inclusion probabilities close to one. These character-

istics include market beta (BETA), book-to-market ratio (BM), one-month momentum

(MOM1M), twelve-month momentum (MOM12M), sales-to-price ratio (SP), and idiosyn-

cratic volatility (SVAR). These variables are strongly linked to systematic risk, reflect-

ing how asset returns respond to macroeconomic and market-wide fluctuations. Their

consistently high inclusion probabilities across portfolios highlight their significance

in explaining time-varying risk exposures.

In contrast, characteristics such as accruals (ACC) and standardized unexpected

earnings (SUE) are predominantly selected for mispricing, with high posterior in-

clusion probabilities across most test asset sets, except for the 25 ME/BM portfo-

lios. These variables typically reflect short-term valuation errors or earnings-related

anomalies (e.g., Sloan, 1996), making them more likely to influence the alpha compo-

nent rather than factor loadings.

Notably, the characteristics driving mispricing and those driving factor exposures

are largely disjoint, highlighting the model’s ability to separate persistent pricing er-

rors from systematic risk. This separation lends empirical support to the structural

distinction between α1 and β1 in the model specification.

Several characteristics also exhibit context-dependent importance. For instance,

asset growth (AGR), the cash flow-to-price ratio (CFP), and the R&D-to-market ratio

(RDM) are not selected for the ME/BM 25 portfolios but contribute meaningfully to
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Figure 4: Characteristics Importance in Different Test Assets

This figure depicts selection probabilities and coefficients of characteristics across test assets. Panel (a)
reports the probability that each of the 20 characteristics is selected to explain mispricing, while Panel
(b) shows the selection probability for explaining factor loadings. Results pertain to the first latent factor
only. Each cell displays the selection probability, with color intensity reflecting its magnitude.
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return variation in Bi360, Uni610, and P-Tree portfolios.

This reinforces the idea that characteristic relevance depends on the informational

complexity of the test assets. These movements are more pronounced on the loading

side, indicating that as the test-asset universe becomes more complex and the number

of priceable risk dimensions increases, the model must mobilize a broader set of char-

acteristics on the loading, thereby lowering the posterior sparsity probability of beta.

By contrast, the posterior sparsity probability of alpha need not decline mechanically;

it only becomes necessary in settings where risk factors struggle to absorb the varia-

tion, such as Small500, to introduce a denser, characteristic-driven mispricing channel.

Overall, approximately 60% of the available characteristics are selected in at least

one component, whether for mispricing or for factor loadings, across the test asset

sets. The probabilistic nature of the Bayesian selection process allows the model to

express uncertainty about inclusion while remaining interpretable. Furthermore, the

estimated coefficients on the first latent factor reveal economically intuitive loadings

— particularly for characteristics like momentum, value, and volatility — demonstrat-

ing that the latent factors capture meaningful structure in the cross section. 8

To summarize, our analysis across multiple sets of test assets reveals that spar-

sity is not a fixed property, but rather it varies systematically with the complexity and

pricing difficulty of the asset set. Specifically, we document a robust inverse relation-

ship between posterior sparsity probabilities and pricing difficulty: test assets with

higher absolute Jensen’s alpha or higher tangency portfolio Sharpe ratios tend to ex-

hibit lower levels of sparsity. In contrast, simpler and more homogeneous asset sets,

such as the ME/BM 25 portfolios, exhibit higher sparsity levels, reflecting their limited

need for complex explanatory structures.

These findings highlight that viewing asset pricing models as strictly sparse or

8Figure 2 presents the selection probabilities of characteristics driving factor loadings, along with
their coefficients on the first factor, under a model specification without mispricing. While the selected
characteristics remain fairly consistent, the estimated coefficients on the first factor vary considerably.
This result indicates that imposing the mispricing restriction forces the model to absorb phenomena
that should be attributed to mispricing through time-varying loadings, which renders beta denser and
degrades its economic interpretability. Consequently, allowing for mispricing and estimating separate
sparsity probabilities for the two channels is essential to prevent misattribution between risk and mis-
pricing.
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dense creates an overly simplistic dichotomy. Instead, sparsity emerges as a property

to be inferred from the data. Our probabilistic framework provides a flexible and

empirically grounded approach to modeling this variation, offering deeper insights

into expected returns across diverse sets of test assets.

5.2 Macro Regimes and Sparsity Probability

Beyond cross-sectional variation, we hypothesize that sparsity also evolves over

time, particularly in response to changing macroeconomic conditions. A substantial

body of literature documents the time-varying nature of asset pricing relationships.

For instance, Avramov and Chordia (2006a) show that factor loadings (betas) vary

systematically with business cycle indicators and offer a business-cycle-based expla-

nation for the role of momentum in the cross section of returns. Likewise, Avramov

and Chordia (2006b) demonstrate that the alpha and beta of mean-variance portfo-

lios respond differently to firm characteristics across economic regimes, with variables

related to distress, profitability, and momentum exhibiting heterogeneous effects dur-

ing expansions and recessions. Furthermore, structural breaks identified by Smith and

Timmermann (2021) suggest the presence of distinct economic regimes that necessitate

different model specifications, while Li et al. (2023) underscore the temporal variation

in return predictability.

These findings suggest that the probability of sparsity, which essentially reflects

the relevance of characteristics for mispricing and factors, may itself be time-varying.

In this section, we empirically examine whether sparsity changes across macroeco-

nomic regimes and structural breaks, and assess whether different sets of firm charac-

teristics contribute to return dynamics at different points in time.

To investigate this hypothesis, we apply our method across two regime classifi-

cations proposed in the literature. The first one follows the three structural regimes

identified by Smith and Timmermann (2021). Panel A of Table 4 reports that the ex-

planatory power of characteristics for both alphas and betas varies substantially across

regimes. Notably, the number of characteristics driving mispricing declines over time:

the posterior mean of qα increases from 0.72 in the first regime to 0.77 in the third,
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suggesting that fewer characteristics are relevant for capturing mispricing in recent

decades. This trend may reflect increasing market efficiency and a diminished role for

persistent pricing errors. Conversely, qβ falls from 0.56 to 0.46 over the same period,

indicating that factor loadings have become less sparse and now depend on a richer

set of characteristics. These findings suggest a growing complexity in risk exposures

over time, even as mispricing becomes more concentrated.

Table 4: Time Variation Analysis: Sparsity in Structural Breaks / Business Cycles

The table displays performance statistics of P-Tree 100 test assets over different periods, focusing on
models with three latent factors. Panel A considers structural breaks discovered in Smith and Timmer-
mann (2021). Regime 1 covers Jan. 1990 to Jul. 1998, Regime 2 covers Sep. 1998 to Jun. 2010, and
Regime 3 covers Jul. 2010 to Dec. 2024. Panel B consists of regimes by business cycles, in which the
recession periods, totaling 88 months, are defined using Sahm Rule-designated phases: October 1990 -
November 1992, May 2001 - October 2002, March 2008 - May 2010, March 2020 - March 2021, and June
2024 - September 2024. Panel C is the whole period from January 1990 to December 2024. The reported
statistics include model performance metrics (cross-sectional R2 and tangency Sharpe ratio), as well as
estimates of qα and qβ .

CSR2 TP. SR (qα, qβ)

Panel A: Sequential segmentation
Regime1 48.5 1.92 0.72,0.56
Regime2 24.1 0.82 0.71,0.53
Regime3 59.7 0.72 0.77,0.46

Panel B: Macro-driven segmentation
Normal 53.8 1.18 0.67,0.46

Recession 14.2 0.77 0.76,0.50

Panel C: Full period
Whole 42.4 1.00 0.69,0.43

Second, while Smith and Timmermann (2021) identify structural regimes based

on calendar time, we further examine how sparsity evolves across business cycles us-

ing the real-time Sahm Rule Recession Indicator. This measure classifies recessions as

periods when the three-month average unemployment rate exceeds its 12-month min-

imum by at least 0.5 percentage points. Based on this classification, we estimate the

model separately for recessionary and normal periods.

Panel B of Table 4 reveals a pronounced deterioration in model performance dur-

ing recessions. The cross-sectional R2 drops sharply from 53.8% in normal periods to
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just 14.2%, and the Sharpe ratio declines from 1.18 to 0.77. These shifts reflect a con-

traction in return predictability and pricing efficiency under macroeconomic stress.

At the same time, posterior sparsity probabilities change significantly during re-

cessions. Specifically, qα rises from 0.67 to 0.76, indicating that fewer firm-level char-

acteristics are needed to explain mispricing. Meanwhile, qβ increases modestly from

0.46 to 0.50, suggesting a slightly denser factor structure. These results suggest that

recessions diminish the explanatory power of firm fundamentals for pricing errors,

while increasing reliance on systematic exposures.

Several mechanisms may explain this pattern. (i) Heightened uncertainty can shift

investor focus from firm-specific variables to broader macro-level risks, reducing the

relevance of cross-sectional predictors (Avramov et al., 2007). (ii) During downturns,

increased risk aversion may lead to a reallocation of capital toward safer assets (Baker

and Wurgler, 2007) or amplify demand for downside protection (Avramov et al., 2022),

thereby weakening firm-level predictors. (iii) Large macroeconomic shocks can dis-

rupt the firm-level return-generation process (Avramov et al., 2013), undermining pre-

dictability during crises (Chordia and Shivakumar, 2002).

Regime-based characteristics importance. Having documented clear time depen-

dence in sparsity probabilities, we now ask: across different macro regimes, which

firm characteristics enter the mispricing and which enter the factor loadings? How

are their weights reallocated as regimes switch? Thus, we further investigate which

specific firm characteristics are relevant across different structural regimes. Figure 5

illustrates the evolution of the explanatory power of selected characteristics for mis-

pricing from different regimes.

Notably, the influence of 12-month momentum as a driver of mispricing steadily

declines across regimes, as evidenced by its decreasing posterior probability and coef-

ficient. In contrast, during Regime 2, which encompasses both the 1997 Asian Finan-

cial Crisis and the 2008 Global Financial Crisis, additional characteristics emerge as

significant contributors to mispricing. Specifically, the cash flow-to-price ratio (CFP)

and market equity (ME) exhibit elevated posterior inclusion probabilities and relatively
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Figure 5: Regime-based Characteristics Importance

This figure presents selection probabilities and coefficients of characteristics over regimes by structural
breaks or business cycles. Panel (a) reports the selection probabilities for each of the 20 characteristics
explaining mispricing, alongside the corresponding α1,i coefficient estimates. Panel (b) shows selection
probabilities for characteristics explaining factor loadings, together with the associated β1,i estimates.
For brevity, results are shown for the first latent factor only. Each cell displays the coefficient for the
characteristic, with color intensity reflecting the magnitude of the selection probability.
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large coefficients. This pattern suggests that in periods of elevated uncertainty and

macroeconomic stress, investors may place greater weight on firms’ cash-generating

ability and size as signals of resilience. Firms with strong cash flow fundamentals

likely offered more predictable earnings streams (Koijen and Van Nieuwerburgh, 2011),

while large-cap stocks were perceived as safer investments (Ang et al., 2006), poten-

tially contributing to their positive excess returns during this turbulent regime.

Furthermore, under recession and non-recession regimes as defined by the Sahm

Rule Recession Indicator, we observe a significant shift in the drivers of mispricing.

During recessionary periods, both the bid-ask spread (BASPREAD), a proxy for liq-
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uidity costs, and 12-month momentum (MOM12M) exhibit substantially lower posterior

inclusion probabilities. This decline suggests that in times of heightened macroeco-

nomic stress, investors de-emphasize liquidity-related frictions and past return trends,

instead prioritizing macroeconomic indicators and firm fundamentals. The reduced

relevance of BASPREAD likely reflects the declining role of trading costs in pricing, as

market participants shift focus to systemic risk and solvency (Pástor and Stambaugh,

2003). Similarly, the attenuated explanatory power of momentum during recessions is

consistent with a shift in investor preferences toward more stable and defensive assets,

reducing reliance on trend-following strategies that may underperform in volatile or

risk-averse environments (Chordia and Shivakumar, 2002).

In addition, characteristics such as asset growth (AGR), net stock issues (NI), op-

erating profitability (OP) and R&D-to-market equity (RDM) lose their ability to explain

systematic risk. This likely reflects the fact that, during recessions, returns become

increasingly driven by latent macroeconomic factors, thereby weakening the role of

firm-specific characteristics in capturing variation in dynamic factor loadings. 9

Taken together, the evidence indicates that sparsity is both regime- and cycle-

dependent. Along a secular trend of efficiency improvement, alpha becomes more

concentrated; under macroeconomic stress, beta becomes denser, and alpha is less

systematically explained by firm-level characteristics. Treating sparsity as a learnable

latent quantity and updating it over time in the posterior yields a more robust trade-off

between statistical fit and economic interpretation.

6 Conditional Model for Observable Factors and Sparsity

We estimate separate models for each test asset set, deriving posterior probabili-

ties of sparsity specific to each dataset. The latent factors vary across specifications,

reflecting the distinct structure of each dataset. This section examines how factor

specification affects the posterior probability of sparsity, with a focus on the role of

9Figure A.5 reports the selection probabilities of characteristics driving factor loadings and their cor-
responding coefficients on the first factor in the absence of mispricing. While the selected characteristics
remain fairly consistent, the estimated coefficients on the first factor exhibit significant variability.
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observable factors. Section 6.1 evaluates the impact of replacing latent factors with

observable ones, while Section 6.2 examines the integration of both observable and la-

tent factors in a unified framework. Our methodology flexibly accommodates models

based on observable factors, latent factors, or a combination of both.

6.1 Observable Factors and Sparsity

To examine whether the sparsity patterns documented earlier persist under a

common factor structure, we extend our framework by replacing the asset-specific la-

tent factors with pre-specified factors shared across all models. This allows sparsity to

emerge endogenously within the Bayesian framework, helping to separate differences

in factor structure from the learning of sparsity probabilities and thereby highlighting

the transferability and robustness of posterior sparsity.

We consider two categories of pre-specified factors. The first category includes

widely used observable factors, such as the market factor and the Fama–French five

factors. The second category consists of a five-factor specification extracted via IPCA,

estimated from individual stock returns to maximize its ability to capture information

embedded in the equity market. For the IPCA specification, we analyze two versions:

one that incorporates mispricing and one that excludes it, corresponding to Eqs. (2)

and (3), respectively. These factors are integrated into our Bayesian framework, where

sparsity patterns are determined endogenously, yielding conditional factor models.

Following Kelly et al. (2019), we report TotalR2 in Table 5.10

We examine whether the sparsity probability patterns documented in Section 5.1

persist when the type of test assets is fixed but their number varies. Panel A of Table

5 reveals a robust trend: within the same type of test assets, the probability of spar-

sity declines as the number of assets increases. The magnitude of these probabilities

varies across models, reflecting differences in the properties of the factors. Specifically,

probabilities for CAPM and IPCA (WithM) are lower than those for FF5 and IPCA

(WithoutM). For CAPM, the limited explanatory power of its single-factor structure

10TotalR2 = 1−
∑N

i=1

∑T
t=1(ri,t−r̂i,t)

2∑N
i=1

∑T
t=1(ri,t−β̂iMktRFt)

2 .
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likely necessitates capturing a larger portion of expected returns through mispricing,

which, in turn, requires more characteristics to explain it. Similarly, for IPCA (WithM),

incorporating mispricing explicitly during factor estimation produces factors that em-

phasize variation related to the factors themselves. Consequently, when applied in

other models, additional characteristics are needed to account for the mispricing com-

ponent. By contrast, FF5 and IPCA (WithoutM) yield greater sparsity in mirpricing.

FF5 expands the span of the observed factor space. IPCA (WithoutM) disallows mis-

pricing at the extraction stage, so the structure that would otherwise be attributed to

mispricing is partially forced into the factor loadings. As a result, within our condi-

tional model, the residual burden carried by alpha is systematically reduced.

As pricing difficulty increases, the sparsity of alpha and beta diverges in a com-

plementary way; however, factor-extraction procedures that disallow mispricing can

reverse this pattern. We analyze cases where the test assets share the same type and

number but differ in pricing difficulty. Panel B of Table 5 reveals that for CAPM, FF5,

and IPCA (WithM), small-stock portfolios exhibit a lower probability of sparsity in

mispricing compared to the 500 big-stock portfolios. Conversely, the probability of

sparsity in factor loadings is higher for small-stock portfolios. This pattern aligns with

our earlier findings. In contrast, the IPCA (WithoutM) model shows a distinct pat-

tern in mispricing. This difference may arise because the IPCA (WithoutM) factors

incorporate mispricing information during estimation. As a result, when these factors

are incorporated into other models, the corresponding mispricing component is re-

duced. Put differently, whether mispricing is accommodated at the factor-estimation

stage determines the burden borne by alpha in the subsequent conditional model. This

observation is consistent with the difference in qα between IPCA (WithM) and IPCA

(WithoutM), as noted in Panel A.

Third, we assess whether the estimated probabilities of sparsity differ across com-

monly used test asset sets. Panel C reveals substantial variation in sparsity proba-

bilities across test assets, even for conditional pre-specified factor models. Notably,

models estimated on ME/BM25 portfolios consistently display the highest probability
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Table 5: Sparsity for Different Pre-specified Factors

This table reports performance statistics for models with the market factor (CAPM), the Fama–French
five factors (FF5), the IPCA five factors estimated with mispricing (IPCA LF5 (WithM)), and the IPCA
five factors estimated without mispricing (IPCA LF5 (WithoutM)). The analysis encompasses portfolios
with varying numbers of P-Tree assets (Panel A), two groups of individual stocks with equal sample
sizes but differing average market equity value (Panel B), and three widely used portfolio sets: ME/BM
25, Bi360, and Uni610 (Panel C). Reported metrics include the total R2 and estimates of qα and qβ .

CAPM FF5 IPCA LF5 (WithM) IPCA LF5 (WithoutM)
TotalR2 (qα, qβ) TotalR2 (qα, qβ) TotalR2 (qα, qβ) TotalR2 (qα, qβ)

Panel A: P-Tree
100 1.9 0.55,0.37 31.2 0.74,0.21 35.6 0.54,0.22 34.5 0.75,0.20
200 1.7 0.48,0.31 31.5 0.69,0.17 35.8 0.47,0.21 35.0 0.62,0.19
400 2.0 0.43,0.32 30.5 0.65,0.17 30.8 0.38,0.17 29.9 0.58,0.17

Panel B: Ind. Stock
500 big 0.0 0.56,0.31 6.0 0.58,0.17 5.9 0.63,0.17 5.7 0.62,0.16

500 small -1.0 0.44,0.39 3.0 0.47,0.22 8.5 0.54,0.17 8.7 0.68,0.17

Panel C: Others
ME/BM25 1.6 0.72,0.56 47.1 0.77,0.20 76.8 0.78,0.18 76.3 0.78,0.19

Bi360 1.6 0.32,0.25 38.4 0.53,0.17 63.6 0.5,0.17 62.8 0.43,0.17
Uni610 1.1 0.43,0.31 65.9 0.55,0.17 20.9 0.46,0.17 19.5 0.46,0.17

of being sparse.

A broader pattern emerges: models with a larger number of factors exhibit lower

probabilities of sparsity in factor loadings. For instance, in the P-Tree100 specification,

the posterior mean of qβ is 0.37 for CAPM but only about 0.2 for the other three models.

Similarly, for ME/BM25 portfolios, CAPM’s qβ is 0.56, compared with roughly 0.2

for the others. This suggests that simpler models rely more heavily on individual

asset characteristics to capture price dynamics, whereas richer factor structures reduce

this reliance by incorporating broader systematic components. In parallel, disallowing

mispricing at the factor-extraction stage further reduces the complexity allocated to the

mispricing within the conditional model.

Further evidence supports the coexistence of sparse and dense structures in the

cross-section of asset prices. Using pre-specified factors consistent across models—rather

than latent factors estimated for each test asset set—produces similar sparsity patterns.

This consistency indicates that these patterns are not driven by dataset-specific latent

factors but instead reflect fundamental characteristics of cross-sectional asset price dy-
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namics.

6.2 Augmented Conditional Model for Observable Factors

A foundational question in asset pricing is whether traditional observable factors,

such as those in the CAPM or Fama-French models, are sufficient to explain systematic

return variation, or whether latent factors are necessary to account for the residual

pricing structure. This section examines this question using a conditional Bayesian

framework, which jointly models latent and observed risk exposures while allowing

sparsity patterns to emerge endogenously. This design decouples the choice of factor

specification from the choice of sparsity, enabling a direct assessment of their marginal

complementarity and substitutability.

Rather than treating observable and latent factors as competing alternatives, we

investigate their complementary roles. Observable factors capture well-understood

risks, whereas latent factors address omitted structures or nonlinear pricing effects

that traditional models cannot span. We consider three specifications: models with

observed factors only, models with latent factors only, and models that jointly in-

clude both observed and latent factors. This design offers a nuanced perspective on

how combining known and previously hidden sources of systematic variation affects

model performance and the explanatory power of firm characteristics.

Table 6 presents results from models estimated on the P-Tree 100 portfolios. Pan-

els A–C explore conditional models with varying inclusion of observed and latent fac-

tors, while Panel D provides unconditional benchmarks for comparison. Across these

specifications, we evaluate how characteristic-based sparsity adapts to expanded in-

formation sets, shedding light on the interplay between factor exposures and system-

atic return variation.

First, we evaluate the baseline impact of observable and latent factors in isola-

tion. Panel A demonstrates that conditioning on observable factors alone, particularly

FF3 and FF5, substantially improves model fit relative to MKT. Specifically, CSR2 in-

creases from 14.9% to 50.4%, accompanied by a reduction in α RMSE. The sparsity

patterns indicate that FF models induce relatively sparse α1 and highly sparse β1,
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Table 6: Augmented Conditional Observable Factor Models

This table presents estimation metrics from Sparse Bayesian IPCA and asset-specific regressions across
model specifications using P-Tree 100 portfolios. The “ α RMSE” metric captures the root mean squared
error between mispricing (α0 +α1(Zi,t−1)) and zero. For brevity, “ LF ” denotes latent factors, with the
number indicating their count. Panel A presents the results from a conditional model that uses only
observable factors. Panel B shows the results using only latent factors. Panel C considers a model that
incorporates both observable and latent factors. Panel D presents results from asset-specific regressions,
with separate regressions estimated for each asset and aggregated for overall performance.

CSR2 TP.SR (qα, qβ) αRMSE

Panel A: only obs
MKT 14.9 0.57 0.55,0.37 0.0032
FF3 27.3 0.60 0.65,0.26 0.0026
FF5 50.4 1.13 0.74,0.39 0.0014

Panel B: only latent
LF1 29.5 0.35 0.52,0.47 0.0036
LF3 45.0 1.00 0.68,0.58 0.0021
LF5 56.8 1.02 0.77,0.66 0.0011

Panel C: obs + latent
MKT+LF1 53.9 0.87 0.69,0.35 0.0015
MKT+LF3 53.8 0.85 0.78,0.41 0.0006
MKT+LF5 56.5 1.06 0.79,0.48 0.0005
FF3+LF1 41.6 1.07 0.67,0.27 0.0014
FF3+LF3 53.5 1.03 0.82,0.34 0.0001
FF3+LF5 57.4 1.26 0.80,0.56 0.0003
FF5+LF1 50.6 1.21 0.67,0.35 0.0012
FF5+LF3 53.2 1.41 0.80,0.42 0.0004
FF5+LF5 55.8 1.25 0.79,0.58 0.0005

Panel D: uncond. model
MKT / 0.57 / 0.0060
FF3 11.5 0.60 / 0.0056
FF5 49.3 1.13 / 0.0042

suggesting that observed factors capture some risk premia while leaving considerable

characteristic-level heterogeneity unexplained.

In contrast, Panel B highlights the superior explanatory power of models incorpo-

rating latent factors. For example, increasing latent factors from LF1 to LF5 increases

CSR2 from 29.5% to 56.8%. This improvement reflects the ability of latent factors to

capture more systematic variation in returns. Moreover, as more return variation is

explained by factors, the density of β1 sparsity decreases, reducing reliance on mis-
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pricing or spurious factor loadings. This endogenous shift exemplifies the concept of

Schrödinger’s Sparsity, where the sparsity structure evolves dynamically as the model’s

factor span deepens.

Second, Panel C examines models that jointly incorporate observable and latent

factors, and the results indicate pronounced complementarity. Adding latent factors

to observable-only models consistently enhances pricing metrics. For instance, FF5

alone achieves CSR2 of 50.4%, while FF5 + LF5 increases CSR2 to 55.8% and reduces α

RMSE from 0.0014 to 0.0005. Furthermore, sparsity reallocates toward systematic com-

ponents: across MKT+LF and FF+LF combinations, qβ increases while qα stabilizes or

rises modestly. Intuitively, latent factors absorb systematic variation not spanned by

observed factors, thereby reducing the dependence of factor loadings on characteris-

tics.

Third, we emphasize the informational value of conditioning, beyond raw per-

formance. Comparing conditional and unconditional specifications in Panels A vs. D,

the CSR2 of FF3 rises from 11.5% to 27.3%, while α RMSE drops by over 50%. The

unconditional regressions based solely on observed factors tend to misattribute part

of the time-varying exposure to the mispricing, whereas conditioning reallocates those

components back to the factor channel. These gains are further amplified when latent

factors are considered. The results suggest that observable-only models leave residual

pricing structure in the cross section, which our framework recovers through latent

factor learning and adaptive sparsity.

Figure 6 further illustrates how latent factors reconfigure sparsity across charac-

teristics. Under the MKT-only model, variables such as BM and MOM12M dominate the

market beta channel, while others (e.g., ACC) contribute minimally to it. Adding a la-

tent factor shifts the explanatory weight: ADM, SP, and SVAR gain prominence, while

previously dominant variables diminish in importance. This reflects a richer allocation

of explanatory roles — an effect only visible through joint modeling of conditional fac-

tor structure and probabilistic sparsity.

Finally, this section outlines a promising direction for future research. Rather than
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enforcing a unified sparsity prior on observed and latent components, future studies

could estimate separate sparsity processes for each. This approach may yield sharper

insights into the distinction between known and unknown sources of systematic risk.

Figure 6: Characteristics Importance in Conditional Factor Models

This figure presents coefficients and posterior selection probabilities for characteristics driving alphas
(mispricing) and betas (factor loadings) under two specifications: (a) market factor only and (b) market
plus latent factor. The posterior probability of a characteristic contributing to alphas is denoted by
α1. Columns β1, MKT and β1, LF 1 capture posterior selection probabilities for the market factor and the
first latent factor, respectively. Each cell displays the corresponding coefficient (α1,l or β1,l), with color
intensity reflecting the magnitude of selection probability.
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7 Implications for Out-of-sample Predictive Accuracy

Earlier empirical analysis shows that posterior sparsity adaptively reallocates model

complexity between mispricing and factor loadings, materially affecting both pricing

performance and interpretability. We now verify that this learned sparsity is not an
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in-sample mirage but also operates out of sample while minimizing predictive losses

arising from structural and parameter uncertainty. To this end, we conduct two out-

of-sample exercises. Section 7.1, on the model side, fixes the test-asset universe and

compares multiple specifications to assess whether endogenously estimated sparsity

probabilities deliver generalization, prior robustness, and complexity matching. Sec-

tion 7.2, on the data side, varies the type and complexity of the test assets to examine

whether, as cross-sectional heterogeneity and dimensionality increase, sparsity learn-

ing continues to align model complexity with the asset set’s information-carrying ca-

pacity and translates into stable OOS gains. To preserve identification and estimation

stability, recession segments in the time-series dimension are too short; therefore, we

do not implement a separate out-of-sample exercise.

7.1 Learning Sparsity, Prior Robustness, and Complexity Matching

The previous results in Section 4 indicate two key points: (i) the posterior dis-

tribution of qβ rarely concentrates at high values, and (ii) models with pre-specified

sparsity levels exhibit sizable differences in pricing performance, implying substantial

model uncertainty. A direct implication is that exogenous sparsity-based procedures,

which fix the set of predictors and ignore model uncertainty, are prone to predictive

losses. Extrapolation error in our cases primarily arises from two sources of uncer-

tainty: structural uncertainty (how sparse alpha and beta should be) and parame-

ter uncertainty (noise amplification under weak signals). Consequently, if sparsity is

learned from the data rather than fixed in advance, we should observe improvements

along three dimensions: (i) generalization, that is, whether learning sparsity consis-

tently prevails on CSR2; (ii) prior robustness, meaning that within a reasonable family

of priors, OOS metrics vary only modestly across prior changes; and (iii) complexity

matching, whereby as the number of factors K increases, information is reallocated

between the mispricing and factor loading channels and the reallocation is reflected

in OOS performance rather than being merely an in-sample tuning artifact. We show

these by comparing the out-of-sample (OOS) performance across alternative model

specifications.
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To test the three predictions above, we implement an evaluation protocol with

three modules. First, generalization: we estimate the Bayesian with learning / fixed

sparsity, Bayesian model without sparsity, and IPCA model on a common training set

and compare out-of-sample CSR2 and TP.SR on a held-out window. Second, prior ro-

bustness: we vary the prior means for qα and qβ over 0.1, 0.5, 0.9 and assess the stability

of OOS metrics and posterior sparsity. Third, complexity matching: we vary the fac-

tor dimension K ∈ 1, 5 and examine how information reallocation between the α and

β channels affects OOS performance. Throughout, preprocessing and the test-asset

universe are held fixed, and inference is summarized by posterior dominance proba-

bilities and effect sizes. Table 7 reports both in-sample (INS) and OOS performance

across four distinct model specifications (consistent with those in Table 1), using the

first 15 years of the 35-year sample for estimation and the subsequent 20 years for

evaluation.

Focusing on cross-sectional model fitness, when K = 5, the specification that

learns the sparsity level delivers the strongest OOS performance (CSR2 = 68.7%). This

model ((qα prior mean, qβ prior mean) = (0.9,0.1)) demonstrates INS posterior means of

0.94 and 0.31, respectively. It also shows the highest alpha-sparsity probability and the

lowest beta-sparsity probability among all K = 5 specifications in Panel A, aligning

with the best-performing model in the full sample.

Beyond this result, we establish three interpretations. First, models that learn

sparsity exhibit stronger prior robustness, thereby attenuating the influence of model

uncertainty relative to exogenously fixed-sparsity alternatives. Panel A shows that the

models perform similarly under different priors for the sparsity probabilities. While

prior choices do matter, their impact is limited: when K = 1, the largest OOS CSR2

difference is only 29.1 − 28.3 = 0.8(%). By contrast, Panel B reveals sizable perfor-

mance gaps across models that fix different sparsity levels: when K = 1, the largest

OOS CSR2 difference is 30.1 − 17.7 = 12.9(%). These results highlight the cost of ig-

noring model uncertainty. Since the true sparsity probabilities are unknown, learning

them endogenously using a neutral prior with means set to 0.5 for both qα and qβ is
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Table 7: Out-of-sample Model Performance under Different Priors

This table presents in-sample (INS) and out-of-sample (OOS) results under varying prior assumptions
for sparsity on the P-Tree 100 test assets. Metrics include cross-sectional R2, Sharpe ratio of the latent
factor tangency portfolio, and the posterior mean of INS sparsity probabilities. K denotes the number
of latent factors. In Panel A, the row labeled “(qα prior mean, qβ prior mean)” reflects unconstrained
sparsity priors, where qα and qβ follow Beta distributions: Beta(9, 1), Beta(5, 5), and Beta(1, 9) with
means of 0.9, 0.5, and 0.1, respectively. Panel B imposes restrictions on characteristics influencing α1

and β1. Specifically, Mα limits characteristics impacting α1, while Mβ constrains those affecting each
factor loading β1,k. Panel C reports Bayesian estimates without sparsity constraints, whereas Panel D
provides results using the standard (dense) IPCA methodology.

INS OOS
CSR2 TP. SR (qα, qβ) CSR2 TP. SR

K = 1 K = 5 K = 1 K = 5 K = 1 K = 5 K = 1 K = 5 K = 1 K = 5

Panel A: Unrestricted # selected chars.

(qα prior mean,
qβ prior mean)

0.9,0.9 16.0 52.9 0.37 1.54 0.72,0.60 0.94,0.60 28.3 68.1 0.39 0.71
0.5,0.9 16.4 53.1 0.36 1.46 0.56,0.60 0.79,0.60 28.9 67.5 0.38 0.76
0.1,0.9 16.5 51.3 0.35 1.61 0.41,0.60 0.62,0.61 29.0 66.2 0.38 0.75
0.9,0.5 16.2 53.0 0.36 1.40 0.72,0.44 0.94,0.47 28.6 67.9 0.39 0.64
0.5,0.5 16.4 53.8 0.36 1.43 0.57,0.44 0.80,0.44 28.9 68.1 0.38 0.88
0.1,0.5 16.6 55.4 0.35 1.41 0.41,0.44 0.65,0.44 29.0 67.3 0.38 0.71
0.9,0.1 16.3 53.3 0.36 1.49 0.72,0.27 0.94,0.31 28.7 68.7 0.39 0.88
0.5,0.1 16.5 52.7 0.36 1.51 0.57,0.27 0.78,0.33 29.0 67.8 0.38 0.72
0.1,0.1 16.7 52.1 0.35 1.55 0.41,0.27 0.62,0.33 29.1 66.2 0.38 0.85

Panel B: Fixed # selected chars.

(Mα,Mβ)

2,2 11.1 30.9 0.42 0.58 / / 19.9 62.0 0.47 0.07
10,2 14.0 20.6 0.37 0.76 / / 29.9 48.1 0.41 0.20
18,2 14.6 8.5 0.35 0.48 / / 30.6 38.1 0.40 0.05
2,10 14.7 51.7 0.41 1.62 / / 19.2 64.9 0.46 0.65

10,10 15.6 35.2 0.35 2.11 / / 28.4 51.9 0.38 1.38
18,10 16.5 29.7 0.33 1.78 / / 30.1 48.9 0.37 0.43
2,18 14.7 47.6 0.41 1.31 / / 17.7 66.3 0.46 0.58

10,18 17.9 43.9 0.34 1.72 / / 29.6 57.0 0.37 0.98
18,18 17.5 28.4 0.32 4.13 / / 29.5 45.0 0.36 0.04

Panel C: No sparsity
(Mα,Mβ) 20,20 16.9 39.6 0.28 0.95 / / 27.8 56.5 0.32 0.66

Panel D: IPCA
(Mα,Mβ) 20,20 21.1 37.8 0.32 0.57 / / 8.1 36.0 0.37 0.49

reasonable. Even if this prior is far from the truth, its influence on realized perfor-

mance remains limited. In contrast, pre-specifying the sparsity level might yield poor

model performance. Put differently, sparsity is a learnable latent quantity: the data

pull the posterior toward an interior region favored by the evidence, and the prior is

a starting point rather than a conclusion. By contrast, exogenously fixing sparsity is

often misaligned with the evaluation-window regime and thereby translates directly

into predictive loss.

Moreover, the functional division between mispricing and factor loadings is vali-

dated out of sample, implying that complexity matching is borne out by out-of-sample

evidence. When K increases to 5, the best OOS specification corresponds to a posterior
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with “sparser alpha and richer beta” (INS posterior means approximately (0.94, 0.31)),

consistent with our mechanism: a higher factor dimension allows the factor loading

channel to absorb a larger share of systematic variation, so the mispricing channel

need not bear components that factor loading can explain. Posterior sparsity learning

further implements spike selection and hard thresholding on alpha, while applying

mild shrinkage to beta, resulting in a complexity allocation that is tilted toward beta.

This reallocation of information across channels is clearly reflected in the OOS metrics:

CSR2 improves systematically as K increases.

In addition, indiscriminate densification and reliance on non-averaged point es-

timates both underperform out of sample. Comparing Panels C and D (without spar-

sity) with Panels A and B (with sparsity) demonstrates that incorporating sparsity

is crucial for estimating asset pricing models. A fully dense Bayesian approach lacks

disciplined exclusion of weak signals and tends to parameterize noise, leading to over-

fitting within the evaluation window. IPCA does not assign probabilistic weights over

the model space and imposes no structured coefficient shrinkage. Thus, its point esti-

mates can conflate uncertainty with predictive heterogeneity, thereby amplifying the

error of extrapolation.

Overall, these findings highlight the pervasiveness of model uncertainty and the

importance of probabilistically learning sparsity, support the central proposition of

Schrödinger’s sparsity. Now we have reported both full-sample and OOS perfor-

mance across alternative model specifications. Our objective is to demonstrate that

endogenously estimating the sparsity probability is a viable and coherent approach for

estimating asset pricing models. Predictive gains stem from disciplined management

of model uncertainty via shrinkage and averaging, rather than from merely stacking

additional parameters or fixing sparsity ad hoc.

7.2 OOS Performance across Test Assets: Complexity, Sparsity Discipline and Pre-

dictability

Since the construction of test assets is closely tied to the sparsity probability and

the predictability, we ask whether sparsity learning can, as cross-sectional complexity

45



varies, continue to align model complexity with the asset set’s information-carrying

capacity and maintain stable predictive performance out of sample.

Consistent with the design in Section 5.1, we cover three classes of test assets. 11

Table 8 reports, for the three prior-mean pairs (0.5, 0.5), (0.9, 0.9), and (0.1, 0.1), the

in-sample CSR2 and the posterior means of (qα, qβ), together with the out-of-sample

CSR2.

Table 8 conveys three stable findings. First, within a given test-asset class, OOS

predictive power is clearly nonmonotonic in cross-sectional complexity. When the P-

Tree portfolios increase from 100 to 200, OOS CSR2 rises markedly, whereas expanding

from 200 to 400 brings it back to roughly 60. The corresponding INS sparsity adjusts

in parallel: as the number of assets grows, qα and qβ decline overall (for a prior mean

of (0.5, 0.5), from 0.68 to 0.43 and from 0.57 to 0.31), indicating that the model must

mobilize a broader set of characteristics to carry information. Once the cross-section

reaches 400, additional noise and redundancy offset the gains, and OOS performance

falls. This pattern of initial improvement, saturation, and subsequent decline illus-

trates the concept of complexity matching: there exists an interior region where the

information load and the sparsity constraint are most closely aligned. Importantly,

this conclusion is robust to the prior; across the three prior-mean pairs, OOS differ-

ences typically do not exceed 2-3 percentage points.

Second, individual stocks are harder than portfolios to deliver stable OOS pre-

dictability, and this difficulty manifests as a clear division of labor in the sparsity

structure. For large caps (Big500), INS values show higher qα and lower qβ (under

the prior mean (0.5, 0.5): 0.63 and 0.37), indicating that risk exposures require a denser

set of characteristics, while the mispricing channel is relatively sparse. For small caps

(Small500), the pattern reverses, with (qα, qβ) = (0.55, 0.51), suggesting that greater

cross-sectional heterogeneity is loaded into the alpha channel. Consistent with this,

OOS CSR2 is generally lower and nearly insensitive to priors, indicating that stock-

11When computing out-of-sample statistics, we still rely on in-sample information, yet the individual-
stock panel is unbalanced. We therefore restrict the sample to assets observed in both the in-sample and
out-of-sample periods. As a result, in this exercise, Big500 and Small500 each contain 399 stocks. We
retain these labels solely for consistency with the full sample.
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level idiosyncratic noise erodes transportable signals; sparsity learning primarily acts

as regularization, guarding against overfitting rather than producing a high out-of-

sample fit.

Table 8: Out-of-sample Model Performance for Different Test Assets

This table reports in-sample (INS) and out-of-sample (OOS) model results under different prior assump-
tions for sparsity on different test assets, focusing on models with three latent factors for simplicity. The
analysis includes portfolios with varying numbers of P-Tree assets, individual stocks, and three addi-
tional portfolio sets: ME/BM 25, Bi360, and Uni610. The metrics include INS and OOS cross-sectional
R2, and the posterior mean of INS sparsity probabilities.

prior mean: (0.5,0.5) prior mean: (0.9,0.9) prior mean: (0.1,0.1)
INS OOS INS OOS INS OOS

CSR2 (qα, qβ) CSR2 CSR2 (qα, qβ) CSR2 CSR2 (qα, qβ) CSR2

Panel A: P-Tree
100 46.2 0.68,0.43 64.1 46.8 0.83,0.57 64.5 43.6 0.53,0.32 61.3
200 46.0 0.59,0.40 72.2 46.8 0.75,0.53 72.8 45.8 0.41,0.23 73.2
400 27.3 0.57,0.31 60.4 26.1 0.72,0.43 60.7 26.8 0.43,0.17 59.6

Panel B: Ind. Stock
500 big 32.3 0.63,0.37 14.7 33.4 0.77,0.50 14.2 33.5 0.48,0.24 14.4

500 small 6.8 0.55,0.51 13.0 8.4 0.70,0.66 13.5 6.8 0.41,0.37 13.0

Panel C: Others
ME/BM25 32.8 0.75,0.60 58.0 55.4 0.93,0.73 53.7 14.8 0.57,0.46 59.7

Bi360 -2.5 0.54,0.29 40.7 0.5 0.68,0.48 51.1 28.2 0.31,0.07 54.5
Uni610 36.6 0.56,0.23 67.2 37.2 0.70,0.37 67.5 35.7 0.42,0.10 66.8

Third, classic portfolio sets of different types also exhibit complexity that matches

out-of-sample. For information-rich sets such as Bi360 and Uni610, OOS predictability

is better unlocked only when the factor-loading channel is allowed to be denser. For

Bi360, as the prior means move from (0.9,0.9) down to (0.1,0.1), the posterior qbeta

declines from 0.48 to 0.07, while OOS CSR2 rises from 51.1% to 54.5%. For Uni610,

OOS remains near 67% and beta stays persistently dense, with q-beta ranging from

0.23 to 0.10, indicating that the model automatically allocates complexity to risk ex-

posures. By contrast, for the simpler ME/BM25, OOS is slightly higher under dense

priors (59.7% versus 58.0% and 53.7%), yet differences across priors are limited, and its

INS results are extremely sensitive to priors, with CSR2 jumping from 32.8% to 55.4%

and then falling to 14.8%. This warns that in-sample fit alone can create a performance

illusion.
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In sum, Table 8 suggests the following: when the cross section is more complex,

the best OOS performance arises from denser factor loadings combined with moder-

ately sparse mispricing; when the cross section is simpler, the model is more robust to

priors, but in-sample fit should not substitute for an out-of-sample test of complexity

matching. Moreover, the simpler the cross section, the more prior-robust the results,

with OOS metrics fluctuating only modestly across priors. Nevertheless, superior INS

does not substitute for an out-of-sample test of complexity matching. If the factor di-

mension is underspecified or sparsity constraints are misaligned, OOS predictability

deteriorates.

8 Conclusion

This paper establishes a new probabilistic foundation for understanding sparsity

in asset pricing models. Departing from the conventional binary paradigm — where

models are assumed to be either sparse or dense — we develop a Bayesian framework

that models sparsity as a latent feature to be inferred from the data. Using hierarchical

spike-and-slab priors within a conditional latent factor model, we learn the probability

that each firm characteristic contributes to mispricing or factor exposures.

Our results challenge the notion of sparsity as a fixed property of the return-

generating process. We demonstrate that the degree of sparsity varies systematically

with the complexity of the test assets, the informativeness of observable factors, and

the prevailing macroeconomic regimes. Simpler portfolios, such as ME/BM sorts, re-

quire only a few predictive characteristics and display high sparsity. In contrast, richer

asset sets, such as Panel-Tree portfolios and small-cap stocks, demand denser repre-

sentations. Recession periods also induce greater sparsity, reflecting the dominance of

a narrower set of priced risks under stress.

Importantly, we find that mispricing terms are generally sparser than factor load-

ings, and the characteristics driving these two channels are largely distinct. Models

that allow the data to determine the relevant level of sparsity outperform those that

impose rigid structures, whether through hard constraints or fully dense specifica-
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tions. Out-of-sample tests likewise show that treating sparsity as a learnable latent

quantity materially improves OOS performance and is robust to priors. As asset and

factor dimensionalities increase, information is progressively reallocated from the mis-

pricing to the factor loadings. The better-performing specifications exhibit denser beta

together with a moderately sparse alpha. Moreover, substituting latent factors with

observable factors maintains the overall random pattern of alpha and beta sparsity.

However, the specific values are subject to variation depending on the underlying fac-

tor models. Augmenting observable factor models with latent components improves

pricing accuracy.

By reframing sparsity as a probabilistic object of inference, our approach provides

a more flexible and empirically grounded perspective on model complexity. It bridges

the divide between sparse and dense modeling philosophies and provides new insight

into how, when, and why firm characteristics matter in the cross section of returns.
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Appendix

A.I Single Testing

As mentioned in Section 4.1, we also examine whether a specific characteristic

systematically explains the mispricing component. Specifically, we test whether the

intercept term α0 and each characteristic-driven coefficient α1,l in Γα are statistically

significant. For each model, we conduct L+ 1 separate tests:

H0 : α0 = 0 and H0 : α1,l = 0, l = 1, . . . , L,

where rejection of H0 indicates statistically significant mispricing.

Figure A.1 reports the posterior confidence intervals for the intercept coefficients

under different prior specifications in the five-factor setting. Panels (a), (c), and (e)

demonstrate that changes in the qβ prior have minimal impact on the confidence inter-

vals of α, while panels (b), (d), and (f) reveal similarly limited sensitivity to variations

in the qα prior. Notably, α1,18 remains statistically different from zero across all specifi-

cations. This stability is consistent with the Mα = 1 result in Table A.2, which confirms

that at least one characteristic-driven intercept in α1 is significant in models with five

latent factors.

These findings underscore the robustness and economic relevance of mispricing

components in explaining cross-sectional returns.
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Figure A.1: Posterior Confidence Intervals for Γα

This figure presents the posterior confidence intervals of all coefficients in Γα under different prior
specifications. The x-axis denotes α0 and α1,l (l = 1, . . . , 20), while the y-axis reports their estimated
values. Green bars indicate that the corresponding confidence interval does not include zero, whereas
purple bars indicate that zero lies within the interval.
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Figure A.2: Diversified P-Tree Test Assets

This figure compares the performance of P-Tree test assets with the ME/BM 25 portfolios. The 100 black
circles represent P-Tree test assets, while the 25 light-red triangles denote ME/BM portfolios. Panel (a)
plots the mean against the standard deviation of monthly returns (in percentages), and Panel (b) plots
CAPM alpha (in percentages) against beta.
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Figure A.3: Histograms of Some Selected Characteristics

This figure illustrates a subset of characteristics from the P-Tree 100 portfolios. Please note that these
are portfolio-level, weighted raw characteristics. Our method, however, employs cross-sectionally stan-
dardized portfolio characteristics.
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Figure A.4: Sparsity Levels and Pricing Difficulty of Test Assets (without Mispricing)

This figure illustrates the relationship between sparsity in factor loadings and the pricing difficulty of
test assets. The plot presents the relationship between qβ and the Sharpe ratio of the test assets. Circles,
triangles, and squares denote bi-sorted, uni-sorted, and P-Tree portfolios, respectively.
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Figure A.5: Regime-based Characteristics Importance (without Mispricing)

This figure presents selection probabilities of characteristics over regimes by structural breaks or busi-
ness cycles. Panel (a) shows selection probabilities for characteristics explaining factor loadings and the
associated β1,i estimates. For brevity, results are shown for the first latent factor only. Each cell displays
the coefficient for the characteristic, with color intensity reflecting the magnitude of selection probabil-
ity.
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Table A.1: Equity Characteristics

This table lists the descriptions of 61 characteristics used in the empirical study.

No. Characteristics Description Category
1 ABR Abnormal returns around earnings announcement Momentum
2 ACC Operating accruals Investment
3 ADM Advertising expense-to-market Intangibles
4 AGR Asset growth Investment
5 ALM Quarterly asset liquidity Intangibles
6 ATO Asset turnover Profitability
7 BASPREAD Bid-ask spread (3 months) Frictions
8 BETA Beta (3 months) Frictions
9 BM Book-to-market ratio Value-versus-growth
10 BM IA Industry-adjusted book to market Value-versus-growth
11 CASH Cash holdings Value-versus-growth
12 CASHDEBT Cash to debt Value-versus-growth
13 CFP Cashflow-to-price Value-versus-growth
14 CHCSHO Change in shares outstanding Investment
15 CHPM Change in Profit margin Profitability
16 CHTX Change in tax expense Momentum
17 CINVEST Corporate investment Investment
18 DEPR Depreciation/ PP&E Momentum
19 DOLVOL Dollar trading volume Frictions
20 DY Dividend yield Value-versus-growth
21 EP Earnings-to-price Value-versus-growth
22 GMA Gross profitability Investment
23 GRLTNOA Growth in long-term net operating assets Investment
24 HERF Industry sales concentration Intangibles
25 HIRE Employee growth rate Intangibles
26 ILL Illiquidity rolling (3 months) Frictions
27 LEV Leverage Value-versus-growth
28 LGR Growth in long-term debt Investment
29 MAXRET Maximum daily returns (3 months) Frictions
30 ME market equity value Frictions
31 ME IA Industry-adjusted size Frictions
32 MOM1M Previous month return Momentum
33 MOM12M Cumulative returns in the past (2-12) months Momentum
34 MOM36M Cumulative returns in the past (13-36) months Momentum
35 MOM60M Cumulative returns in the past (13-60) months Momentum
36 MOM6M Cumulative returns in the past (2-6) months Momentum
37 NI Net equity issue Investment
38 NINCR Number of earnings increases Momentum
39 NOA Net operating assets Investment
40 OP Operating profitability Profitability
41 PCTACC Percent operating accruals Investment
42 PM Profit margin Profitability
43 PS Performance Score Profitability
44 RD SALE R&D-to-sales Intangibles
45 RDM R&D-to-market Intangibles
46 RE Revisions in analysts’ earnings forecasts Intangibles
47 RNA Return on net operating assets Profitability
48 ROA Return on assets Profitability
49 ROE Return on equity Profitability
50 RSUP Revenue surprise Momentum
51 RVAR CAPM Idiosyncratic volatility -CAPM (3 months) Frictions
52 RVAR FF3 Res. var. - Fama-French 3 factors (3 months) Frictions
53 SEAS1A 1-Year Seasonality Intangibles
54 SGR Sales growth Value-versus-growth
55 SP Sales-to-price Value-versus-growth
56 STD DOLVOL Std of dollar trading volume (3 months) Frictions
57 STD TURN Std.of Share turnover (3 months) Frictions
58 SUE Standardized unexpected quarterly earnings Momentum
59 SVAR Return variance (3 months) Frictions
60 TURN Shares turnover Frictions
61 ZEROTRADE Number of zero-trading days (3 months) Frictions
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Table A.2: Number of Selected Characteristics in Different Models

This table reports the number of selected characteristics in different models. “Mα” represents the num-
ber of characteristics driving α, “Mβ” denotes the number of characteristics driving the factor loadings,
and K refers to the number of factors. Panel A shows the case where separate spike-and-slab priors are
used for α and β, while Panel B corresponds to the models without mispricing. The number of selected
characteristics is calculated by counting the number of characteristics that have a selection probability
of 0.5 or greater. The selection probability for each characteristic is the posterior mean of its p(d |∼).

Mα Mβ

Panel A: With mispricing models K = 1 K = 3 K = 5 K = 1 K = 3 K = 5

(qα prior mean,
qβ prior mean)

0.9,0.9 10 4 1 10 12 10
0.5,0.9 10 5 1 10 11 10
0.1,0.9 10 5 1 10 11 10
0.9,0.5 10 5 1 10 11 10
0.5,0.5 10 4 1 10 12 10
0.1,0.5 10 5 1 10 11 10
0.9,0.1 10 5 1 11 12 11
0.5,0.1 10 4 1 11 12 11
0.1,0.1 10 5 2 11 11 10

Panel B: Without mispricing models

q prior mean
0.9 / / / 10 11 11
0.5 / / / 10 12 10
0.1 / / / 10 13 14

Table A.3: Out-of-sample Model Performance under Different Priors (without Mis-
pricing)

This table reports in-sample (INS) and out-of-sample (OOS) model results under various prior assump-
tions for sparsity on P-Tree 100 test assets, including cross-sectional R2, Sharpe ratio from the latent
factor tangency portfolio, and the posterior mean of INS sparsity probabilities. K indicates the number
of latent factors. Panel A’s row labeled “qβ prior mean” corresponds to unconstrained sparsity settings,
where priors on qβ indicate three Beta distributions: Beta(9, 1), Beta(5, 5), and Beta(1, 9), with means
of 0.9, 0.5, and 0.1, respectively. Panel B restricts the number of characteristics driving β1. Specifically,
Mβ restricts the number of characteristics affecting each factor loading β1,k.

INS OOS
CSR2 TP. SR qβ CSR2 TP. SR

K = 1 K = 5 K = 1 K = 5 K = 1 K = 5 K = 1 K = 5 K = 1 K = 5

Panel A: Unrestricted # selected chars.

qβ prior mean
0.9 15.0 53.2 0.43 1.44 0.59 0.60 14.7 68.3 0.49 0.92
0.5 15.0 51.5 0.43 1.49 0.43 0.47 14.6 68.0 0.49 0.90
0.1 15.1 53.2 0.43 1.60 0.24 0.32 14.5 68.9 0.49 0.98

Panel B: Fixed # selected chars.

Mβ

2 9.7 39.6 0.45 0.89 / / 13.6 62.7 0.50 0.63
10 14.9 48.0 0.43 1.38 / / 13.8 64.9 0.49 0.66
18 15.6 55.1 0.43 1.83 / / 14.9 66.2 0.49 0.55
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Table A.4: Sparsity for Different Test Assets (without Mispricing)

This table presents performance statistics across different test assets, focusing on models with three
latent factors for simplicity. The analysis includes portfolios with varying numbers of P-Tree assets,
individual stocks, and three additional portfolio sets: ME/BM 25, Bi360, and Uni610. Reported statistics
comprise cross-sectional R2, tangency portfolio Sharpe ratio, and estimates of qβ .

CSR2 TP. SR qβ

Panel A: P-Tree
100 53.2 0.73 0.43
200 64.9 0.76 0.40
400 60.1 0.73 0.19

Panel B: Ind. Stock
500 big 43.1 0.23 0.37

500 small 22.9 3.48 0.28

Panel C: Others
ME/BM 25 51.1 0.54 0.50

Bi360 61.4 0.46 0.18
Uni610 61.1 0.31 0.20

Table A.5: Time Variation Analysis: Sparsity in Structural Breaks / Business Cycles
(without Mispricing)

The table displays performance statistics of P-Tree 100 test assets over different periods, focusing on
models with three latent factors for simplicity. Panel A considers sequential segmentation, whose break-
points follow Smith and Timmermann (2021). Regime 1 covers January 1990 to July 1998 (103 months),
Regime 2 spans September 1998 to June 2010 (143 months), and Regime 3 extends from July 2010 to
December 2024 (174 months). Panel B consists of macro-driven segmentations, in which the recession
periods, totaling 88 months, are defined using Sahm Rule-designated phases: October 1990-November
1992, May 2001-October 2002, March 2008-May 2010, March 2020-March 2021, and June 2024-September
2024. Panel C is the whole period from January 1990 to December 2024. The reported statistics include
model performance metrics (cross-sectional R2 and tangency Sharpe ratio), as well as estimates of qβ .

CSR2 TP. SR qβ

Panel A: Sequential segmentation
Regime1 54.4 1.28 0.53
Regime2 34.4 0.69 0.51
Regime3 69.2 1.04 0.49

Panel B: Macro-driven segmentation
Normal 62.4 0.89 0.45

Recession 16.6 0.70 0.42

Panel C: Full period
Whole 53.2 0.73 0.43
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