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Abstract 

This study examines whether information from Bitcoin perpetual futures improves 

the forecasting of Bitcoin spot volatility. Using high-frequency intraday data, we 

construct two types of predictors from perpetual futures: funding-rate-based 

measures and realized volatility measures. These predictors are incorporated into a 

Heterogeneous Autoregressive model to forecast daily, weekly, and monthly spot 

volatility. Both in-sample and out-of-sample results show significant improvements 

in volatility forecasts, particularly from funding rates and at longer forecast horizons. 

Forecast gains are concentrated in periods of high perpetual futures trading volume. 

These findings underscore the informational value of perpetual futures for volatility 

forecasting. 
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1. Introduction 

Volatility forecasting is central to financial decision-making and economic policy, as 

accurate predictions support effective risk management, portfolio optimization, and derivatives 

pricing, and enable regulators to monitor systemic risk and maintain financial stability (Poon 

and Granger, 2003). This role is especially critical in the Bitcoin market, where volatility often 

exceeds 80% on an annualized basis—substantially higher than that of major traditional asset 

classes such as equities (typically 15–20%) or government bonds (below 10%). Such elevated 

volatility underscores the need for robust risk management to protect investments. Moreover, 

as the Bitcoin options market remains in its early stages yet is expanding rapidly, accurate 

volatility forecasts are essential for fair pricing and efficient market functioning. Given 

Bitcoin’s growing integration into the broader financial ecosystem,2 monitoring its volatility is 

also crucial for safeguarding financial stability.  

This study investigates whether information extracted from the Bitcoin perpetual 

futures market enhances the forecasting of Bitcoin spot market volatility. Perpetual futures—

futures contracts that never expire—are the most actively traded derivatives in cryptocurrency 

markets. 3  Like traditional futures, perpetual futures offer leveraged exposure to price 

movements without requiring ownership of the underlying asset. However, unlike traditional 

futures, they allow for continuous exposure without the need for contract rollover.  

We focus on the Bitcoin perpetual futures market for three main reasons. First, because 

perpetual futures aggregate investor expectations without requiring consensus on fundamental 

 
2  For example, an increasing number of public companies have begun allocating Bitcoin to their 
corporate treasuries as a strategic reserve asset, signaling growing institutional acceptance. See Wall 
Street Journal, “Businesses Are Bingeing on Crypto, Dialing Up the Market's Risks,” April 28, 2025. 
3  In Q1ௗ2025, the global crypto derivatives market recorded approximately $21ௗtrillion in notional 
trading volume, with perpetual futures accounting for more than 90% of that activity (Source: 
tokeninsight.com).  
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value (Shiller, 1993), they are well-suited for price discovery of Bitcoin, which lacks income 

and valuation anchors. Second, the absence of contract expiration and rollover costs simplifies 

trading and concentrates liquidity in a single instrument, further enhancing price discovery.4 

Third, by enabling leveraged exposure without direct custody, perpetual futures mitigate 

custody, regulatory, and operational risks associated with Bitcoin ownership,5 making them 

especially attractive to institutional and large-scale investors, who are more likely to be 

informed or influential. Collectively, these features suggest that the perpetual futures market 

may embed valuable information for forecasting spot market volatility. 

However, early-stage markets often suffer from limited liquidity and a dominance of 

uninformed trading, resulting in inefficiencies and transitory noise (Shleifer and Summers, 

1990; Makarov and Schoar, 2020). He et al. (2022) document frequent violations of theoretical 

pricing bounds in cryptocurrency perpetual futures, implying persistent arbitrage opportunities. 

While such mispricing has diminished over time, suggesting improving efficiency, the market 

may remain inefficient. Given the relative nascency of Bitcoin perpetual futures, their 

usefulness for volatility forecasting remains an open empirical question. These competing 

perspectives motivate our investigation into their informational value for predicting spot 

volatility.  

We consider two sets of predictors derived from Bitcoin perpetual futures markets. The 

first is based on funding rates, an institutional feature unique to perpetual futures. Unlike 

 
4  Alexander et al. (2020) provide empirical evidence that perpetual futures are more liquid than 
traditional futures and lead spot prices. 
5 Bitcoin ownership entails custody risks—including private key loss, hacking, exchange failures, and 
physical threats. Recent “wrench attacks,” where individuals with large cryptocurrency holdings are 
physically threatened to surrender private keys, highlight these risks (see Wall Street Journal, “Severed 
Fingers and ‘Wrench Attacks’ Rattle the Crypto Elite” May 17, 2025). In addition, institutions with 
fiduciary duties face regulatory and operational barriers to direct custody, while self-custody requires 
security infrastructure that many are unwilling or unable to implement (Fidelity Digital Assets, 2024).  
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traditional fixed-maturity futures, perpetual futures prices are not guaranteed to converge to the 

spot price due to the absence of a predetermined expiration date. To maintain alignment 

between perpetual futures and spot prices, a funding rate mechanism is employed: long position 

holders periodically pay short position holders a rate proportional to the price gap, thereby 

incentivizing trades that help close it (He et al., 2022). This mechanism suggests that funding 

rates serve as a powerful aggregator of market information, reflecting traders’ willingness to 

pay, while also carrying implications for volatility dynamics: elevated or unstable funding rates 

indicate concentrated and leveraged positions that can trigger forced rebalancing, amplify 

order-flow shocks, and heighten fluctuations in the spot market.6 We construct several funding-

rate-based measures to capture both the level and the intraday variation of funding rates. 

The second set of predictors consists of realized volatilities computed from intraday 

prices in the perpetual futures market. Unlike funding rates, which reflect traders’ positioning 

incentives that drive price adjustments, realized volatility captures the ex-post market response 

to these adjustments. This provides complementary information by quantifying the actual 

magnitude of price fluctuation observed in the perpetual futures market. Moreover, divergences 

between spot and futures volatilities can be informative. When spot volatility exceeds futures 

volatility, it reflects stress or illiquidity in the spot market that is not immediately absorbed by 

derivatives trading. Such frictions in risk transmission across markets suggest that futures-

based volatility measures contain predictive value for subsequent spot volatility. We construct 

daily, weekly, and monthly realized volatilities of perpetual futures to capture risk dynamics 

across different horizons. 

We employ the Heterogenous Autoregressive (HAR) model of Corsi (2009), augmented 

with perpetual-futures-based predictors, to investigate whether these additional measures 

 
6 Similar mechanisms have been documented in other asset markets, where leverage constraints and 
order imbalances amplify volatility (e.g., Brunnermeier and Pedersen, 2009). 
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improve Bitcoin volatility forecasts. Both in-sample and out-of-sample analyses are conducted 

across multiple forecast horizons (daily, weekly, and monthly). The results indicate that signals 

from perpetual futures improve in-sample fit and, in out-of-sample tests, both Granger-cause 

spot volatility and enhance forecasting accuracy. Forecasting gains are more substantial at 

longer horizons, consistent with the idea that short-term volatility is obscured by temporary 

market frictions, while longer horizons allow the informational content of perpetual futures to 

manifest more clearly. Moreover, the gains are generally stronger for funding-rate-based 

predictors than for perpetual realized volatility measures, suggesting that funding rates embed 

more distinct information beyond lagged spot volatility, whereas the relatively limited 

independent information in perpetual volatility reflects the structural anchoring of perpetual 

futures prices to spot prices via the funding mechanism.  

We further examine how the predictive value of perpetual-futures-based measures 

varies with trading activity. The results show that their contribution to volatility forecasting is 

primarily observed when perpetual futures trading volumes are relatively high, consistent with 

the view that more active markets incorporate information more efficiently.7 Our findings are 

robust to a range of checks, including forecasting the level versus the log of volatility (linear 

versus log-linear specifications), employing alternative empirical proxies for return volatility, 

and using recursive versus rolling estimation schemes with different estimation window sizes.  

This study contributes to two strands of literature. First, it extends the growing body of 

research on cryptocurrency perpetual futures markets. Prior studies have examined various 

aspects of these instruments, including their role in price discovery (Alexander et al., 2020), 

the effects of contract design and market microstructure on intraday pricing (De Blasis and 

Webb, 2022), their ability to enhance liquidity and reduce price dislocations under capital 

 
7  See, for example, Chordia, Roll, and Subrahmanyam (2008, 2011), Roll, Schwartz, and 
Subrahmanyam (2009), and Cao et al. (2024). 
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constraints (Gornall, Rinaldi, and Xiao, 2024), and the causal impact of their introduction or 

removal on spot market quality (Ruan and Streltsov, 2024). Other research has developed 

theoretical pricing models (Ackerer, Hugonnier, and Jermann, 2024), identified arbitrage 

opportunities via pricing bounds (He et al., 2022), and documented substantial returns from 

crypto carry trades involving shorting perpetual futures against spot holdings (Christin et al., 

2022). While the existing literature focuses primarily on price levels and directional 

predictability (first moment), this paper explores a previously overlooked dimension: the 

informational content of perpetual futures for future volatility (second moment). By doing so, 

we provide a more comprehensive understanding of market efficiency. 

Second, this study contributes to the literature on volatility forecasting, particularly in 

Bitcoin markets. Prior research has examined the predictive power of option-implied volatility 

(Hoang and Baur, 2020), macroeconomic and technical variables (Wang et al., 2022), sentiment 

signals from news media (Sapkota, 2022), GARCH and HAR models (Bergsli et al., 2022), 

and a range of statistical and machine learning methods (Dudek et al., 2024). However, the 

predictive value of perpetual futures, a dominant instrument in cryptocurrency trading, remains 

largely unexplored. This paper fills this gap by assessing whether signals from perpetual futures 

Granger-cause spot volatility and enhance the accuracy of realized volatility forecasts. 

The remainder of the paper is organized as follows. Section 2 describes the data, the 

measurement of Bitcoin return volatility, the predictors used in the analysis, and the models 

employed for volatility forecasting. Section 3 investigates the predictive value of funding rate-

based measures through in-sample analysis, out-of-sample forecasting, and robustness checks. 

Section 4 examines whether volatility in the perpetual futures market contains predictive 

information for spot volatility, following a parallel structure of in-sample, out-of-sample, and 

robustness analyses. Section 5 concludes.  
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2. Data and Methodology 

2.1. Data 

We collect intraday price and volume data for both Bitcoin spot and perpetual futures 

markets from Binance, one of the largest and most liquid cryptocurrency exchanges, using the 

official Binance API. Specifically, we use the BTC-USDT trading pair, which is the most 

actively traded perpetual futures contract on the platform, along with its corresponding spot 

market series. Using BTC-USDT for both markets ensures consistency, as this pair is by far the 

most liquid globally and is widely regarded as the effective spot benchmark in cryptocurrency 

trading.8 The data are sampled at 5-minute intervals in Coordinated Universal Time (UTC), 

starting at 00:00:00 on January 1, 2020, and ending at 23:55:00 on April 30, 2025.9 Prices are 

based on last transaction prices, and all series are synchronized to a common 5-minute grid. 

We also collect trading volumes for both spot and perpetual markets at the same frequency, 

which we later use in robustness checks to account for liquidity conditions. 

 

2.2. Measurement of Bitcoin Volatility 

Following McAleer and Medeiros (2008) and Liu et al. (2015), we measure realized 

volatility (RV) as the square root of the sum of squared 5-minute log returns, which serves as 

a proxy for daily volatility:  

𝑅𝑉௧ = ඨ෍ 𝑟௧ିଵା௜/ே
ଶ

ே

௜ୀଵ
, (1) 

 
8 While USDT may deviate slightly from USD, such deviations are typically small and transitory, and 
have negligible impact on high-frequency realized volatility measures. 
9  While BTC-USDT perpetual futures on Binance were officially launched on September 9, 2019, 
historical data for the contract is only available staring on January 1, 2020, which determines the 
beginning of our sample period. 
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where 𝑁 denotes the number of intraday intervals in a day, and 𝑟௧ିଵା௜/ே is the log return over 

the 𝑖th interval. 

To address microstructure noise inherent in high-frequency data, we also compute the 

realized kernel (RK) estimator, following Barndorff-Nielsen et al. (2008, 2009):  

𝑅𝐾௧ = ඨ෍ 𝑘 ൬
ℎ

𝐻 + 1
൰ 𝛾௛

ு

௛ୀିு
, 𝑤ℎ𝑒𝑟𝑒   𝛾௛ = ෍ 𝑟௧ିଵା௜/ே𝑟௧ିଵା(௜ି|௛|)/ே

ே

௜ୀ|௛|ାଵ
. (2) 

We use the Parzen kernel for the weight function 𝑘(∙) and set the bandwidth parameter 𝐻 to 

5.10 

 

[Insert Table 1 around here] 

 

Panel A of Table 1 reports descriptive statistics for the RV and RK measures, computed 

separately for the spot and perpetual futures markets. We also report their squared values, as 

some studies defines “realized volatility” in terms of realized variance.11 The distributional 

characteristics of these measures are broadly similar across the two markets. Both RV and RK 

exhibit substantial positive skewness and excess kurtosis, indicating departures from normality, 

as confirmed by the Jarque-Bera test. To mitigate the impact of non-normality and fat tails, we 

also consider logarithmic transformations of these measures. The Ljung-Box statistics indicate 

significant autocorrelation, consistent with the well-documented phenomenon of volatility 

clustering (Andersen et al., 2001; 2003). Figure 1 plots the time series of RV and RK for the 

spot and perpetual futures markets, highlighting the persistent nature of Bitcoin volatility. 

 

 
10 Results are similar when using 𝐻=10; not reported for brevity. 
11 See, for example, Andersen et al. (2003), Andersen, Bollerslev, and Diebold (2007), Busch et al. 
(2011), and Bonato et al. (2023). 
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[Insert Figure 1 around here] 

 

2.3. Funding-Rate-Based Variables 

We collect historical funding rate data for perpetual futures contracts from the Binance 

website.12 On Binance, funding rate payments are determined and published by the exchange 

every eight hours, yielding three observations per day.13 Although this frequency is limited,14 

these realized funding rates represent the actual cost of holding long versus short positions in 

the perpetual futures market and therefore convey economically meaningful signals about 

positioning imbalances and market sentiment. To explore the informational content of funding 

rates for volatility forecasting, we construct several explanatory variables that capture both 

their level and intraday variation: 

 AvgFR: The daily average of the three funding rates, capturing the overall directional 

pressure from net long or short positions. 

 AbsFR: The absolute value of the daily mean funding rate, reflecting the strength of 

market imbalance regardless of direction. 

 StdFR: The standard deviation of the three intraday funding rates, measuring variation 

in funding costs throughout the day. 

 TrendFR: A monotonicity indicator that equals +1 if funding rates increase across the 

three intervals, −1 if they decrease, and 0 otherwise, summarizing whether intraday 

funding rates follow a consistent directional pattern. 

 
12 See Binance: https://www.binance.com/en/futures/funding-history/perpetual/funding-fee-history.  
13 Funding rates on Binance are charged at 00:00, 8:00, and 16:00 Universal Time Coordinated (UTC). 
Only traders holding positions at these times are subject to the funding payments, which reflect actual, 
realized costs. Although Binance provides predicted funding rates in real time, historical data on these 
forecasts is not publicly available, limiting their use in empirical analysis. 
14 We acknowledge that with only three observations per day, their aggregates are not statistically robust 
in the conventional sense. Yet because funding rates are released at this frequency by design, our 
construction should be viewed as a pragmatic way to extract economic signals from the realized 
funding-rate data given the market’s data structure. 
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Panel B of Table 1 presents summary statistics for these funding-rate-based variables. 

Since funding rates are typically expressed in very small decimals, often below 0.001%, all 

variables are multiplied by 10,000 for ease of reference. The mean of AvgFR is positive (1.254), 

indicating that, on average, long position holders pay funding fees to short position holders, 

reflecting persistent net demand for long positions over the sample period. This pattern aligns 

with the existence of a structural premium for leveraged long exposure, as documented by 

Christin et al. (2022), who attribute this premium to persistent investor demand for upside 

exposure in cryptocurrencies. AbsFR has a mean of 1.406, suggesting sizable directional 

imbalances in positions. StdFR averages 0.532, indicating moderate intraday variation in 

funding conditions. TrendFR frequently assumes a value of zero, indicating that flat or non-

monotonic funding rate sequences are more common than strictly increasing or decreasing 

intraday trends. Figure 2 plots the time series of these funding-rate-based measures. 

 

[Insert Figure 2 around here] 

 

 
2.4. Volatility Forecasting Models: HAR and Extensions 

To model and forecast volatility, we employ the Heterogeneous Autoregressive (HAR) 

model proposed by Corsi (2009), which is widely used in the volatility literature. Although it 

is not a formal long-memory model, it effectively captures the long-memory-like behavior 

commonly observed in realized volatility. We choose the HAR model for its empirical 

robustness and its flexibility in incorporating additional predictors. Empirical evidence 

supports this choice: Bergsli et al. (2022) find that HAR models outperform GARCH-type 

models in forecasting Bitcoin volatility, while Dudek et al. (2024) show that simple linear 

models such as HAR perform comparably to more complex machine learning approaches. 
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As a benchmark, we implement the standard HAR model in the following form:  

𝑅𝑉௧ାଵ = 𝛼 + 𝛽ௗ𝑅𝑉௧,ௗ + 𝛽௪𝑅𝑉௧,௪ + 𝛽௠𝑅𝑉௧,௠ + 𝜀௧ାଵ, (3) 

where  𝑅𝑉௧,ௗ = 𝑅𝑉௧ , 𝑅𝑉௧,௪ = ට
ଵ

଻
∑ 𝑅𝑉௧ି௜

ଶ଺
௜ୀ଴  , and 𝑅𝑉௧,௠ = ට

ଵ

ଷ଴
∑ 𝑅𝑉௧ି௜

ଶଶଽ
௜ୀ଴    represent the 

lagged daily, weekly, and monthly realized volatilities from the spot market, respectively.  

We then extend the model by including additional predictors in a vector 𝚾௧:  

𝑅𝑉௧ାଵ = 𝛼 + 𝛽ௗ𝑅𝑉௧,ௗ + 𝛽௪𝑅𝑉௧,௪ + 𝛽௠𝑅𝑉௧,௠ + 𝛾ᇱ𝚾௧ + 𝜀௧ାଵ, (4) 

where 𝚾௧  includes one or more of the following: funding-rate-based variables and realized 

volatility measures from the perpetual futures market, either individually or in combination. 

This allows us to assess the incremental predictive power of perpetual futures signals beyond 

the information already embedded in the lagged spot market volatility.  

To evaluate forecast performance across different horizons, we also estimate the model 

using ℎ-day aggregated volatilities as the dependent variable, defined as the square root of the 

average realized variance over the next ℎ days:  

𝑅𝑉௧,௧ା௛ = ඨ
1

ℎ
෍ 𝑅𝑉௧ା௝

ଶ
௛

௝ୀଵ
, (5) 

where ℎ = 1, 7, 30 correspond to daily, weekly, and monthly horizons, respectively. This 

construction provides a volatility measure that is comparable across horizons by capturing the 

average level of realized variance over the forecast window [𝑡 + 1, 𝑡 + ℎ], thereby enabling us 

to investigate whether the predictive content of perpetual market variables differs across short-, 

medium-, and long-term horizons.  

While the above specifications are based on realized volatility levels, we also consider 

log-transformed versions to account for the heavy-tailed nature of realized volatility and 
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mitigate the impact of extreme observations. Specifically, the log-transformed specification is 

given by 

ln൫𝑅𝑉௧,௧ା௛൯ = 𝛼 + 𝛽ௗ ln൫𝑅𝑉௧,ௗ൯ + 𝛽௪ ln൫𝑅𝑉௧,௪൯ + 𝛽௠ ln൫𝑅𝑉௧,௠൯ + 𝛾ᇱ𝚾௧ + 𝜀௧ାଵ, (6) 

 

 

where ln൫𝑅𝑉௧,௧ା௛൯  denotes the log of the realized volatility over forecast horizon ℎ , and 

ln൫𝑅𝑉௧,ௗ൯ ,  ln൫𝑅𝑉௧,௪൯ , and ln൫𝑅𝑉௧,௠൯  are the logs of daily, weekly, and monthly realized 

volatilities, respectively. 

 

3. Forecasting Bitcoin Spot Volatility with Funding-Rate-Based Predictors 

3.1. In-Sample Analysis 

We begin by assessing whether funding-rate-based measures provide in-sample 

predictive power for Bitcoin spot volatility. Table 2 presents estimation results from linear 

regressions where funding rate variables are added to the benchmark HAR model, either 

individually or jointly:  

𝑅𝑉௧,௧ା௛ = 𝛼 + 𝛽ௗ𝑅𝑉௧,ௗ + 𝛽௪𝑅𝑉௧,௪ + 𝛽௠𝑅𝑉௧,௠ + 𝛾஺௩௚ிோ𝐴𝑣𝑔𝐹𝑅௧ + 𝛾஺௕௦ிோ𝐴𝑏𝑠𝐹𝑅௧

+ 𝛾ௌ௧ௗிோ𝑆𝑡𝑑𝐹𝑅௧ + 𝛾்௥௘௡ௗிோ𝑇𝑟𝑒𝑛𝑑𝐹𝑅௧ + 𝜀௧ାଵ, 
(7) 

 

[Insert Table 2 around here] 

 

Panel A (daily), Panel B (weekly), and Panel C (monthly) present the results across 

three forecast horizons. The benchmark HAR model (column (1)) delivers strong explanatory 

power at all horizons, with all lagged realized volatility terms entering positively and 

significantly. As expected, the importance of short-horizon volatility declines with longer 

forecast horizons: 𝛽ௗ falls from 0.427 (t-statistic=16.90) in Panel A to 0.134 (t-statistic=6.20) 
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in Panel C. Conversely, the weight on longer-horizon volatility increases, with 𝛽௠ rising from 

0.087 (t-statistic=2.54) in Panel A to 0.231 (t-statistic=7.86) in Panel C.  

Adding funding-rate-based predictors improves model fit. The average funding rate 

(AvgFR) has consistently significant and positive coefficients across all horizons and 

specifications, suggesting that greater net long positioning, reflected in higher funding rates, is 

associated with increased future spot volatility, likely due to liquidation risk and position 

unwinding pressures. The coefficients on the absolute average (AbsFR) are positively 

significant without controls for AvgFR but become insignificant when AvgFR is included, 

suggesting that its predictive power is subsumed by AvgFR. Both variables capture position 

imbalances in the market; however, AvgFR not only reflects the magnitude of directional 

pressure (as AbsFR does) but also its direction. This indicates that AvgFR captures a more 

comprehensive measure of market positioning, rendering the incremental explanatory power 

of AbsFR negligible. The standard deviation (StdFR) shows some predictive power at longer 

horizons, but its significance and coefficient sign vary across specifications, indicating limited 

robustness. The directional trend measure (TrendFR) is mostly insignificant, suggesting little 

forecasting value. 

The incremental explanatory power from funding-rate-based predictors is more 

pronounced at longer forecast horizons, as indicated by adjusted 𝑅ଶ  values. In Panel C 

(monthly horizon), the adjusted 𝑅ଶ increases from 24.10% in the HAR-only model (column 

(1)) to 34.11% in the full model with all predictors (column (6)). In comparison, the daily 

horizon models show more modest gains, with increases of only 0.68 to 1.60 percentage points, 

while the weekly horizon models exhibit larger gains of up to 4.52 percentage points. This 

pattern likely reflects that shorter-term volatility is more contaminated by market 

microstructure frictions and transitory liquidity effects, whereas longer horizons allow the 

informational content of perpetual futures to materialize more clearly. 
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[Insert Table 3 around here] 

 

Table 3 presents the results from a log-linear specification, where the dependent 

variable is the log of realized spot volatility and the lagged realized spot volatilities also enter 

in log form. The same set of funding-rate-based predictors—AvgFR, AbsFR, StdFR, and 

TrendFR—are added individually and jointly to the benchmark log-HAR model. The results 

are broadly consistent with those in Table 2. The coefficients on lagged realized spot volatilities 

remain positive and statistically significant across all horizons, with similar patterns in 

magnitude: the coefficient on lagged daily volatility (𝛽ௗ) decreases with the forecast horizon, 

while that on lagged monthly volatility (𝛽௠) increases. When funding-rate-based predictors are 

added individually, all except TrendFR display statistically significant incremental predictive 

power across horizons. In joint specifications, AvgFR and AbsFR retain their significance, 

while StdFR remains significant only at the monthly horizon. Adjusted 𝑅ଶ  improvements 

follow a similar pattern, with larger gains observed when either AvgFR or AbsFR is included 

and when forecasts are made at longer horizons. Overall, Table 3 confirms that funding-rate-

based measures improve in-sample forecasting of Bitcoin spot volatility.  

 

3.2. Out-of-Sample Forecasting Performance 

The central question in this section is whether incorporating funding-rate-based 

predictors improves the out-of-sample performance of volatility forecasts relative to the 

benchmark HAR model. Following Paye (2012), we distinguish between two conceptually 

distinct notions of forecast improvement. The first adopts a structural perspective, examining 

the data-generating process: Do funding-rate-based variables Granger-cause spot volatility, 

such that spot volatility depends not only on its own lags but also on funding-rate-based 
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variables? The second takes a normative perspective, focusing on practical forecasting 

performance: Do the augmented models produce more accurate volatility forecasts than the 

benchmark? 

While related, these two perspectives need not lead to the same empirical conclusion 

due to the classic bias-variance trade-off. Even if a funding-rate-based predictor is part of the 

true model and reduces conditional bias, including it may increase forecast variance through 

parameter estimation noise. As a result, a correctly specified model could underperform a 

simpler, mis-specified benchmark in terms of forecast error.  

To evaluate both aspects of forecast performance, we adopt a two-pronged testing 

approach following Paye (2012). In Subsection 3.2.1, we test Granger causality using the Clark 

and West (CW, 2007) test, which accounts for overfitting in nested models and evaluates 

whether the inclusion of funding rate-based variables adds incremental information beyond 

past volatility. In Subsection 3.2.2, we assess forecast accuracy using the Giacomini and White 

(GW, 2006) test, which evaluates whether augmented models statistically outperform the 

benchmark in terms of predictive loss. 

 

3.2.1. Testing for Granger Causality 

We first test whether funding-rate-based predictors Granger-cause spot volatility by 

applying the CW test for nested models, following Paye (2012). The CW test evaluates whether 

the observed reduction in mean squared prediction error (MSPE) from an augmented model is 

sufficiently large to offset the penalty from estimating additional parameters. Unlike standard 

forecast comparison tests, which tend to favor simpler models in nested settings, the CW test 

introduces a correction term to account for this bias. Let 𝑒௧,଴൫= 𝑦௧ −  𝑦ො௧,଴൯  and 𝑒௧,ଵ൫= 𝑦௧ −

 𝑦ො௧,ଵ൯ denote forecast errors from the benchmark and augmented models, respectively, where 
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𝑦௧ is the realized volatility at time t, and 𝑦ො௧,଴ and 𝑦ො௧,ଵ are forecasts from the benchmark and 

augmented models. The CW test is based on the adjusted forecast error difference: 

𝑓௧ = 𝑒௧,଴
ଶ − 𝑒௧,ଵ

ଶ +  ൫𝑦ො௧,଴ − 𝑦ො௧,ଵ൯
ଶ

  (8) 

The CW test statistic is then given by:  

CW =
𝑓̅

ට𝜎ො௙
ଶ/𝑇

 (9) 

where 𝑓 ̅is the sample mean of 𝑓௧, 𝑇 is the number of out-of-sample forecasts, and 𝜎ො௙
ଶ is the 

sample variance of 𝑓௧ . A significantly positive CW statistic provides evidence of Granger 

causality, indicating that the funding-rate-based variable improves forecasts by offering 

incremental information not already captured by lagged volatility dynamics. 

The last row of Table 4 reports CW statistics comparing the benchmark HAR model—

based solely on lagged realized spot volatility—with four augmented HAR models: three that 

include individual funding-rate-based predictors (AvgFR, AbsFR, and StdFR), and a Kitchen 

Sink model that incorporates all three predictors. 15  Forecasting models are estimated 

recursively, starting with an initial window of 180 days and expanding daily as new 

observations become available. Panel A presents results from linear specifications. Across daily, 

weekly, and monthly horizons, the CW statistics are uniformly positive and highly significant 

at the 1% level. At the daily horizon, CW values range from 4.94 (StdFR) to 11.17 (AbsFR), 

while the Kitchen Sink model also yields a strong and significant statistic of 8.28. At the weekly 

horizon, the evidence is even stronger, with CW statistics exceeding 7.6 for all predictors and 

reaching 11.14 for AbsFR. At the monthly horizon, CW values remain consistently large, 

 
15 The directional measure (TrendFR) is excluded from the out-of-sample analysis, as it was found to 
be largely insignificant in the in-sample regressions (see Table 2, Column (5)). 
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ranging from 8.65 (Kitchen Sink) to 12.40 (StdFR), again confirming significance at the 1% 

level. These results demonstrate that each funding-rate-based variable contributes incremental 

predictive content beyond lagged realized spot volatility, and that the joint inclusion of all three 

predictors continues to deliver significant gains. Panel B reports results from log-linear 

specification and shows a similar pattern of statistically significant positive CW statistics across 

all forecast horizons. Taken together, these findings indicate that perpetual funding-rate-based 

variables Granger-cause spot volatility. 

 

[Insert Table 4 around here] 

 

3.2.2. Testing for Superior Predictive Ability 

While the CW test results in Section 3.2.1 provide evidence that funding rate predictors 

contain unique information about future volatility, they do not necessarily imply that the 

augmented models with funding rate measures improve forecasting performance in a normative 

sense. To evaluate whether funding-rate-based predictors improve forecast accuracy, we use 

the GW test of equal predictive ability. This test assesses whether the average difference in 

forecast losses between the benchmark HAR model and the augmented model is statistically 

significant. The null hypothesis states that both models have equal predictive accuracy. The 

GW test statistic is given by:16 

GW =
√𝑇𝑑்̅

𝜎ො்
,   where   𝑑௧ = 𝐿൫𝑦௧, 𝑦ො௧,଴ ൯ − 𝐿൫𝑦௧, 𝑦ො௧,ଵ൯,    𝑑்̅ = ෍ 𝑑௧

்

௧ୀଵ

/𝑇  (10) 

 
16 The GW test statistic is equivalent to the Diebold and Mariano (2002) test statistic. 
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Here, 𝑦௧ is the realized volatility at time t, 𝑦ො௧,଴ and 𝑦ො௧,ଵ are forecasts from the benchmark and 

augmented models, 𝐿(∙) is a loss function, and 𝜎ො் is a heteroscedasticity- and autocorrelation-

consistent (HAC) estimator of the asymptotic standard deviation of √𝑇𝑑்̅. 

Following Patton (2011), we consider three loss functions for evaluating volatility 

forecasts:  

Mean Squared Error (MSE): 𝐿(𝑅𝑉௧,௧ା௛, 𝑅𝑉෢
௧,௧ା௛) = ൫𝑅𝑉௧,௧ା௛

ଶ − 𝑅𝑉෢
௧,௧ା௛
ଶ ൯

ଶ
,  (11) 

Mean Absolute Percentage Error (MAPE): 𝐿(𝑅𝑉௧,௧ା௛, 𝑅𝑉෢
௧,௧ା௛) = ฬ

ோ௏೟,೟శ೓
మ ିோ௏෢

೟,೟శ೓
మ

ோ௏೟,೟శ೓
మ ฬ,  (12) 

Quasi-Likelihood (QLIKE): 𝐿൫𝑅𝑉௧,௧ା௛, 𝑅𝑉෢
௧,௧ା௛൯ = log൫𝑅𝑉௧,௧ା௛

ଶ ൯ +
ோ௏෢

೟,೟శ೓
మ

ோ௏೟,೟శ೓
మ ,  (13) 

where 𝑅𝑉௧,௧ା௛ denotes the ex-post realized volatility and 𝑅𝑉෢
௧,௧ା௛ is the corresponding forecast. 

Table 4 reports average out-of-sample forecast losses for five models: the HAR 

benchmark, three HAR models augmented with individual funding-rate-based predictors 

(AvgFR, AbsFR, and StdFR), and a Kitchen Sink model that includes all three predictors.  The 

table also presents GW test statistics comparing each augmented model to the benchmark. 

Panel A presents results based on linear specifications. Across all forecast horizons, both 

AvgFR and AbsFR consistently improve forecast accuracy relative to the HAR benchmark. 

The GW statistics for these two predictors are uniformly positive and statistically significant 

across all three loss functions, suggesting robust forecast gains from the augmented models. 

For example, under the monthly forecast horizon, AvgFR yields GW statistics of 13.78 (MSE), 

14.63 (MAPE), and 14.87 (QLIKE), all significant at the 1% level. 

In contrast, StdFR exhibits more mixed results. While it improves predictive accuracy 

at weekly and monthly horizons, it performs poorly at the daily horizon: the GW statistics for 
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StdFR are significantly negative at the daily horizon. This pattern mirrors its weak in-sample 

performance, where StdFR fails to achieve statistical significance and even reduces the model’s 

adjusted 𝑅ଶ  relative to the HAR benchmark (see Table 2, Panel A, Column (4)). The 

combination of significantly positive CW statistics and insignificant GW statistics for StdFR 

indicates that, although StdFR contains unique information about spot volatility, it does not 

translate into forecast accuracy improvements, likely due to large estimation noise. These 

findings suggest that including funding rate dispersion may increase estimation noise when 

forecasting short-term volatility, outweighing its potential informational benefits. 

The Kitchen Sink model generally outperforms the HAR benchmark across all horizons, 

with the larger gains observed at longer horizons. However, it fails to outperform models that 

include AvgFR or AbsFR individually, often producing higher average losses and lower GW 

statistics. Although its improvements over the benchmark remain statistically significant, these 

patterns suggest that StdFR contributes little incremental value and that AvgFR and AbsFR are 

highly correlated, making models with AvgFR or AbsFR alone more effective.  

A similar pattern emerges in Panel B, which presents results from the log-linear 

specifications. AvgFR and AbsFR continue to yield substantial forecast improvements across 

all horizons, with significantly positive GW statistics under all loss functions. Although StdFR 

performs better than in the linear case, its improvements remain modest at short horizons 

relative to models with AvgFR or AbsFR. Overall, the log-linear results reinforce the 

conclusion from the linear specification: funding-rate-based predictors, particularly AvgFR and 

AbsFR, consistently enhance out-of-sample forecast accuracy.  

In sum, the findings in Table 4 suggest that funding-rate-based variables provide 

incremental predictive information beyond that captured by lagged realized volatility, and that 

this information translates into consistent gains in forecast accuracy rather than spurious 

improvements from added model complexity.  
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3.2.3. Variation with Perpetual Trading Volume 

This subsection investigates whether the predictive power of funding-rate-based 

variables depends on trading activity in the perpetual futures market. Since funding rates are 

generated within this market, their informativeness should be greater when trading is more 

active and liquid. To test this, we replicate the out-of-sample analysis in Table 4 across periods 

of high and low perpetual trading volume. We classify high versus low volume periods based 

on the median of the 30-day moving average of the ratio of perpetuals to spot trading volume.17 

 

[Insert Table 5 around here] 

 

Table 5 presents the results separately for high- and low-volume periods. As expected, 

forecast improvements from funding-rate-based predictors are more pronounced during high-

volume periods. In Panel A (linear specification), GW statistics are consistently positive and 

statistically significant in the high-volume subsample across most models and forecast 

horizons.18 In contrast, the low-volume subsample exhibits weaker GW statistics, with more 

frequent insignificance and lower magnitudes when positive. CW statistics are significantly 

positive across all models and both subsamples but are markedly larger during high-volume 

periods, often nearly double, indicating stronger Granger causality when market activity is 

elevated. 

Panel B (log-linear specification) shows similar patterns. The augmented models with 

funding-rate-based measures again perform notably better in high-volume periods, and CW 

 
17 The 30-day average aligns with the longest volatility lag in the HAR specification. Results are robust 
to alternative subsample definitions using daily volume (not tabulated). 
18 The one exception is the model using StdFR alone at the daily horizon, which yields a significantly 
negative GW statistic, echoing earlier in-sample and out-of-sample results on its limited short-term 
predictive power. 
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statistics support greater informational value from funding rates under these circumstances. 

Together, these results highlight that funding rates contribute more meaningfully to volatility 

forecasting when derived from a more active perpetual futures market. 

 

3.3. Robustness Checks 

To evaluate the robustness of our forecasting results, we conduct two complementary 

exercises. First, we examine the sensitivity of results to the choice of volatility proxy by using 

the realized kernel instead of realized volatility. Second, we consider alternative model 

estimation methods, including longer recursive windows and rolling estimations. This section 

reports results from the linear specification only, given the minimal differences from log-linear 

models, and focuses on subsamples split by high- and low-volume periods rather than the full 

sample.19  

 

3.3.1. Realized Kernel as Alternative Volatility Proxy  

We first assess whether our findings are sensitive to the choice of volatility proxy by 

replicating the out-of-sample forecasting analysis using the realized kernel (RK), as defined in 

Eq. (2) and proposed by Barndorff-Nielsen et al. (2008). The RK estimator is designed to 

address the limitations of realized volatility in high-frequency settings, where microstructure 

noise can introduce significant bias. Although RV converges to integrated volatility under 

certain idealized conditions, those assumptions are typically violated in practice. In particular, 

the presence of microstructure noise, stemming from bid-ask bounce, discrete pricing, and 

other market frictions, induces autocorrelations in returns, undermining the consistency of RV. 

The RK estimator mitigates this bias by accounting for such noise, and is widely considered a 

more robust volatility measure in high-frequency data environments. 

 
19 Results using log-linear specifications and the full sample are available upon request. 
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[Insert Table 6 around here] 

 

Table 6 presents the out-of-sample results using RK as a volatility proxy. The overall 

patterns closely resemble those reported in Table 5 based on realized volatility. Funding-rate-

based predictors, such as AvgFR and AbsFR, continue to enhance forecast accuracy relative to 

the HAR benchmark, with stronger effects during high-volume periods. GW statistics for 

models augmented with these predictors remain highly significantly positive in high-volume 

periods but tend to weaken in low-volume periods. CW statistics are significantly positive 

across all specifications, with larger magnitudes in high-volume periods. Thus, the predictive 

value of funding-rate-based variables persists when RK is used as the volatility proxy, 

reinforcing the robustness of our results to alternative volatility measures. 

 

3.3.2. Robustness to Estimation Methods 

We assess the robustness of our results to alternative model estimation strategies. While 

the baseline forecasts are generated using recursive estimation with a 180-day initial window, 

Table 7 considers two alternatives: recursive estimation with a longer 365-day initial window 

(Panel A) and rolling estimation with a fixed 180-day window (Panel B). 

 

[Insert Table 7 around here] 

 

Panel A confirms the robustness of our main findings to a longer estimation window. 

Funding-rate-based predictors, except for StdFR at the daily forecast horizon, improve forecast 

accuracy relative to the HAR benchmark, with stronger forecast gains in high-volume periods. 

Both GW and CW statistics remain significantly positive, with larger magnitudes in high-

volume periods, closely matching the baseline results in Table 5, Panel A.  
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Panel B shows that the forecasting gains from funding-rate-based variables are 

somewhat attenuated under rolling estimation. This is likely due to its greater sensitivity to 

short-term noise and reduced ability to capture longer-term dynamics. Nonetheless, a clear 

contrast emerges across volume subsamples. During high-volume periods, augmented models 

significantly improve forecasts (except at the daily horizon), as reflected in strongly positive 

and statistically significant GW statistics. In contrast, GW statistics turn significantly negative 

during low-volume periods, indicating that the simple HAR benchmark outperforms the 

augmented models. CW statistics remain significantly positive in both subsamples, suggesting 

that funding-rate-based variables contain unique information about spot volatility but fail to 

improve forecast accuracy under low-volume conditions due to large estimation noise. 

 

4. Forecasting Bitcoin Spot Volatility with Perpetual Futures Volatility 

This section examines whether realized volatilities computed from intraday perpetual 

futures prices improve forecasts of Bitcoin spot volatility. While perpetual futures prices are 

structurally linked to funding rates, their predictive value for spot volatility may differ. Funding 

rates function as an adjustment tool to promote convergence between perpetual and spot prices 

by altering traders’ incentives and correcting imbalances in long and short positions. In contrast, 

realized volatility measures based on price dynamics capture the ex-post market response to 

these adjustments. By incorporating these high-frequency price-based volatility signals, we 

assess whether intraday perpetual price dynamics provide incremental predictive information 

about the evolution of spot volatility. 

We follow the same structure as in Section 3 but replace funding-rate-based predictors 

with perpetual volatility measures. Since the methodology has already been described in detail 

in the previous section, we focus here on interpreting the empirical results. 
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4.1. In-Sample Analysis 

Table 8 reports the results from in-sample predictive regressions of Bitcoin spot 

volatility, incorporating volatility differences between the spot and perpetual futures markets 

as additional predictors. Rather than including perpetual market volatility levels directly, we 

use their differences from corresponding spot volatilities to mitigate concerns over 

multicollinearity in coefficient interpretation. Given that the HAR benchmark model already 

includes lagged spot volatilities, which are highly correlated with perpetual volatility, using the 

difference helps isolate the incremental predictive content of perpetual volatility. Notably, this 

modeling choice has no effect on out-of-sample forecasts, as both specifications yield identical 

predictions. 

 

[Insert Table 8 around here] 

 

Each panel of Table 8 is organized by forecast horizon: columns (1)–(5) report results 

for daily forecasts, (6)–(10) for weekly forecasts, and (11)–(15) for monthly forecasts. For each 

horizon, we report estimates from the HAR benchmark, models augmented with a single 

volatility difference (daily, weekly, or monthly), and a Kitchen Sink model that includes all 

three differences. 

Panel A reports the results from the linear specification. The coefficients on the 

difference between spot and perpetual volatilities are generally positive and statistically 

significant, particularly when each is included individually. A positive coefficient indicates that 

when spot volatility exceeds perpetual volatility, interpreted as excess realized risk in the spot 

market, future spot volatility tends to remain high. This pattern is most pronounced for the 

weekly and monthly differences: 𝛿௪ and 𝛿௠  are consistently positive across all forecast 

horizons, while 𝛿ௗ is negative and insignificant at the daily horizon. These results suggest that 

a high spot–perpetual volatility gap observed over a longer past period reflects persistent 
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market stress and supply-demand imbalances, signaling prolonged future risk in the spot 

market.  

In the Kitchen Sink model, the monthly volatility gap remains a robust predictor even 

after controlling for the others, suggesting that longer-horizon volatility gaps contain more 

robust information about future risk. This is likely because long-term volatility captures 

persistent market dynamics and structural risk, whereas short-term volatility is more 

susceptible to transitory noise and temporary market fluctuations. Regarding model fit, all 

augmented models yield higher adjusted 𝑅ଶ values than the HAR benchmark, except for the 

specification including only the daily difference (column 2). As expected, the largest gains are 

observed in models with the monthly difference (columns 4, 9, and 14), supporting the view 

that persistent volatility gaps between spot and perpetual markets are most informative about 

continued market turbulence.  

Panel B presents results from the log-linear specification and largely mirrors the 

patterns in Panel A. The sign and significance of the 𝛿  coefficients remain consistent, and 

improvements in adjusted 𝑅ଶ  follow similar patterns. Overall, the explanatory power of 

perpetual volatility measures is weaker than that of the funding-rate-based predictors in Section 

3 (Table 2). This can be attributed to the structural feature of perpetual futures prices, which 

are anchored to spot prices through the funding rate mechanism. As a result, perpetual volatility 

contains less independent information beyond lagged spot volatility compared to funding rates. 

Nevertheless, perpetual volatility provides consistent predictive signals for future spot 

volatility regardless of model specifications, indicating its incremental informational value 

beyond lagged spot volatility. 

 

4.2. Out-of-Sample Forecasting Performance 
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Table 9 reports the out-of-sample performance of perpetual volatility measures in 

predicting Bitcoin spot volatility. Forecasting models include the HAR benchmark, models 

augmented with a single perpetual volatility measure (daily, weekly, or monthly), and a Kitchen 

Sink model including all three. All models are estimated recursively with an initial 180-day 

window.  

 

 [Insert Table 9 around here] 

 

Panel A presents results from the linear specification. CW test statistics are significantly 

positive across all specifications, indicating robust Granger causality from perpetual to spot 

volatility. Adding perpetual volatility generally improves forecast accuracy relative to the HAR 

benchmark, with the largest gains observed in models including monthly volatility (𝑅𝑉௧,௠
௣௘௥௣). 

GW statistics are significantly positive across all loss functions for these models. The main 

exception is the model with daily volatility (𝑅𝑉௧,ௗ
௣௘௥௣), which yields significantly negative GW 

statistics at the daily forecast horizon, echoing its weak in-sample performance.  

Panel B presents results from the log-linear specification, which closely mirrors the 

findings in Panel A. Both GW and CW statistics are significantly positive, with larger 

magnitudes for longer-term perpetual volatilities at longer forecast horizons. This indicates 

greater reductions in forecast loss and stronger Granger causality from perpetuals to spot 

markets. These findings suggest that longer-term perpetual volatilities convey forward-looking 

information beyond what is captured by lagged spot volatility, particularly at longer horizons. 

Given the similarity between linear and log-linear results, subsequent analyses focus on the 

linear specification for brevity.20  

 

 
20 Results from the log-linear models are available upon request and are qualitatively similar. 
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4.2.1. Variation with Perpetual Trading Volume 

Table 10 evaluates out-of-sample forecasting performance across high- and low-volume 

periods, defined by the median of the 30-day relative trading volume between perpetual and 

spot markets. Forecast improvements are more pronounced during high-volume periods, with 

GW statistics consistently positive and significant across most models and horizons.21  In 

contrast, low-volume periods show mixed GW results with weaker significance, indicating 

diminished predictive power when the perpetual futures market is less active. CW statistics 

remain positive and significant in both subsamples but are notably stronger during high-volume 

periods. Overall, the findings confirm the enhanced informational role of perpetual volatility 

when trading activity is high.  

 

[Insert Table 10 around here] 

 

4.3. Robustness Checks 

4.3.1. Realized Kernel as Alternative Volatility Proxy  

Table 11 reports out-of-sample forecasting performance using RK as the volatility proxy. 

The results show stronger and more consistent forecast improvements from perpetual volatility 

when RK is employed. Compared to Table 10, GW statistics are more uniformly positive and 

significant during high-volume periods. Notably, even the model with daily perpetual volatility 

yields significantly positive GW statistics for daily forecasts in high-volume periods, 

contrasting with its negative or insignificant performance when using realized volatility. The 

divergence between high- and low-volume periods is more pronounced: high-volume periods 

show broadly positive and significant GW statistics across all models and horizons, whereas 

low-volume periods exhibit mixed signs and weaker significance. CW statistics also display 

 
21 The daily volatility model at the daily horizon is an exception. 
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larger positive values during high-volume periods, confirming stronger Granger causality from 

perpetual to spot volatility when trading activity is high. Overall, these results highlight the 

benefits of using RK, suggesting that mitigating microstructure noise enhances the predictive 

content of perpetual volatility.  

 

[Insert Table 11 around here] 

 

4.3.2. Robustness to Estimation Methods 

Table 12 assesses the robustness of our findings to alternative estimation methods, 

focusing on the Kitchen Sink model relative to the HAR benchmark. Panel A reports results 

based on recursive estimation with a 365-day initial window. The results closely align with the 

main findings in Table 10 (180-day initial window), with GW and CW statistics remaining 

consistently positive and significant during high-volume periods, reaffirming the predictive 

power of perpetual market volatility when trading activity is high. 

 

[Insert Table 12 around here] 

 

Panel B uses rolling estimation with a fixed 180-day window. Compared to recursive 

estimation, rolling estimation generally yields weaker forecasting performance, reflected in 

smaller and less significant GW and CW statistics, likely due to its greater sensitivity to 

transitory noise. Nonetheless, the pattern of stronger forecast performance during high-volume 

periods persists. Overall, while the magnitude of improvement varies by estimation methods, 

these robustness checks confirm that perpetual market volatility enhances forecast accuracy 

under active market conditions. 

 

5. Conclusion 
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Given the novelty of perpetual futures and their growing role in the cryptocurrency 

ecosystem, this paper investigates whether signals extracted from the Bitcoin perpetual futures 

market improve forecasts of Bitcoin spot volatility. We focus on two classes of predictors: 

funding-rate-based measures and realized volatility measures derived from perpetual futures 

prices.  

Using an extended Heterogeneous Autoregressive model, we find that both types of 

predictors provide significant incremental information about future spot volatility beyond that 

contained in lagged spot volatility. They improve in-sample fit and, in out-of-sample tests, 

deliver robust evidence of Granger causality and enhanced forecasting accuracy, particularly 

at longer horizons. The predictive value of perpetual futures signals is most pronounced when 

trading volumes in the perpetual market are relatively high. These results remain robust to 

alternative model specifications, different volatility proxies, and both rolling and recursive 

estimation methods. 

Our findings suggest that perpetual-futures-based signals are useful for forecasting 

Bitcoin volatility. These signals can aid investors in risk management, improve derivatives 

pricing, and assist regulators in monitoring market conditions. This study contributes to the 

literature by demonstrating that perpetual futures contain information about higher-order return 

moments, complementing prior research that has primarily focused on price discovery and 

return predictability. In doing so, it also highlights the role of perpetual futures markets in 

shaping spot market risk dynamics and enhancing market efficiency, thereby extending the 

understanding of volatility transmission and price discovery in cryptocurrency markets. 



 
30 
 

References 

Ackerer, D., Hugonnier, J., & Jermann, U. (2024). Perpetual futures pricing (No. w32936). 
National Bureau of Economic Research. 

Alexander, C., Choi, J., Park, H., & Sohn, S. (2020). BitMEX bitcoin derivatives: Price 
discovery, informational efficiency, and hedging effectiveness. Journal of Futures 
Markets, 40(1), 23-43. 

Andersen, T. G., Bollerslev, T., Diebold, F. X., & Ebens, H. (2001). The distribution of realized 
stock return volatility. Journal of Financial Economics, 61(1), 43-76. 

Andersen, T. G., Bollerslev, T., Diebold, F. X., & Labys, P. (2003). Modeling and forecasting 
realized volatility. Econometrica, 71(2), 579-625. 

Andersen, T. G., Bollerslev, T., & Diebold, F. X. (2007). Roughing it up: Including jump 
components in the measurement, modeling, and forecasting of return volatility. The 
Review of Economics and Statistics, 89(4), 701-720. 

Barndorff‐Nielsen, O. E., Hansen, P. R., Lunde, A., & Shephard, N. (2008). Designing realized 
kernels to measure the ex-post variation of equity prices in the presence of 
noise. Econometrica, 76(6), 1481-1536. 

Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A., & Shephard, N. (2009). Realized kernels 
in practice: trades and quotes. Econometrics Journal, 12(3), C1-C32. 

Bergsli, L. Ø., Lind, A. F., Molnár, P., & Polasik, M. (2022). Forecasting volatility of 
Bitcoin. Research in International Business and Finance, 59, 101540. 

Bonato, M., Cepni, O., Gupta, R., & Pierdzioch, C. (2023). Climate risks and state-level stock 
market realized volatility. Journal of Financial Markets, 66, 100854. 

Brunnermeier, M. K., & Pedersen, L. H. (2009). Market liquidity and funding liquidity. The 
Review of Financial Studies, 22(6), 2201-2238. 

Busch, T., Christensen, B. J., & Nielsen, M. Ø. (2011). The role of implied volatility in 
forecasting future realized volatility and jumps in foreign exchange, stock, and bond 
markets. Journal of Econometrics, 160(1), 48-57. 

Cao, J., Goyal, A., Ke, S., & Zhan, X. (2024). Options trading and stock price 
informativeness. Journal of Financial and Quantitative Analysis, 59(4), 1516-1540. 

Chordia, T., Roll, R., & Subrahmanyam, A. (2008). Liquidity and market efficiency. Journal 
of Financial Economics, 87(2), 249-268. 

Chordia, T., Roll, R., & Subrahmanyam, A. (2011). Recent trends in trading activity and market 
quality. Journal of Financial Economics, 101(2), 243-263. 

Christin, N., Routledge, B., Soska, K., & Zetlin-Jones, A. (2022). The crypto carry 
trade. Preprint at http://gerbil. life/papers/CarryTrade. v1, 2. 

Clark, T. E., & West, K. D. (2007). Approximately normal tests for equal predictive accuracy 
in nested models. Journal of Econometrics, 138(1), 291-311. 



 
31 
 

Corsi, F. (2009). A simple approximate long-memory model of realized volatility. Journal of 
Financial Econometrics, 7(2), 174-196. 

De Blasis, R., & Webb, A. (2022). Arbitrage, contract design, and market structure in Bitcoin 
futures markets. Journal of Futures Markets, 42(3), 492-524. 

Diebold, F. X., & Mariano, R. S. (2002). Comparing predictive accuracy. Journal of Business 
& Economic Statistics, 20(1), 134-144. 

Dudek, G., Fiszeder, P., Kobus, P., & Orzeszko, W. (2024). Forecasting cryptocurrencies 
volatility using statistical and machine learning methods: A comparative study. Applied 
Soft Computing, 151, 111132. 

Fidelity Digital Assets. (2024). Channels for exposure to Bitcoin revisited.  

Giacomini, R., & White, H. (2006). Tests of conditional predictive ability. Econometrica, 74(6), 
1545-1578. 

Gornall, W., Rinaldi, M., & Xiao, Y. (2024). Perpetual Futures and Basis Risk: Evidence from 
Cryptocurrency SSRN: https://ssrn.com/abstract=5036933  

He, S., Manela, A., Ross, O., & von Wachter, V. (2022). Fundamentals of perpetual 
futures. arXiv preprint arXiv:2212.06888. 

Hoang, L. T., & Baur, D. G. (2020). Forecasting bitcoin volatility: Evidence from the options 
market. Journal of Futures Markets, 40(10), 1584-1602. 

Hung, J. C., Liu, H. C., & Yang, J. J. (2021). Trading activity and price discovery in Bitcoin 
futures markets. Journal of Empirical Finance, 62, 107-120. 

Liu, L. Y., Patton, A. J., & Sheppard, K. (2015). Does anything beat 5-minute RV? A 
comparison of realized measures across multiple asset classes. Journal of 
Econometrics, 187(1), 293-311. 

Makarov, I., & Schoar, A. (2020). Trading and arbitrage in cryptocurrency markets. Journal of 
Financial Economics, 135(2), 293-319. 

McAleer, M., & Medeiros, M. C. (2008). Realized volatility: A review. Econometric 
Reviews, 27(1-3), 10-45. 

Patton, A. J. (2011). Volatility forecast comparison using imperfect volatility proxies. Journal 
of Econometrics, 160(1), 246-256. 

Paye, B. S. (2012). ‘Déjà vol’: Predictive regressions for aggregate stock market volatility 
using macroeconomic variables. Journal of Financial Economics, 106(3), 527-546. 

Poon, S. H., & Granger, C. W. J. (2003). Forecasting volatility in financial markets: A 
review. Journal of Economic Literature, 41(2), 478-539. 

Roll, R., Schwartz, E., & Subrahmanyam, A. (2009). Options trading activity and firm 
valuation. Journal of Financial Economics, 94(3), 345-360. 

Ruan, Q., & Streltsov, A. (2024). Perpetual Futures Contracts and Cryptocurrency Market 
Quality. Available at SSRN. 



 
32 
 

Sapkota, N. (2022). News-based sentiment and bitcoin volatility. International Review of 
Financial Analysis, 82, 102183. 

Shiller, R. J. (1993). Measuring asset values for cash settlement in derivative markets: hedonic 
repeated measures indices and perpetual futures. The Journal of Finance, 48(3), 911-931. 

Shleifer, A., & Summers, L. H. (1990). The noise trader approach to finance. Journal of 
Economic Perspectives, 4(2), 19-33. 

Wang, J., Ma, F., Bouri, E., & Guo, Y. (2023). Which factors drive Bitcoin volatility: 
macroeconomic, technical, or both?. Journal of Forecasting, 42(4), 970-988. 

 



 
33 
 

Figure 1. Time Series of RVs and RKs for Bitcoin Spot and Perpetual Futures 

This figure presents the time series of realized volatilities (RV, top row), their logarithmic 
transformation (middle row), and realized kernels (RK, bottom row) for Bitcoin spot (left column) and 
Bitcoin perpetual futures (right column) traded on Binance from December 31, 2019 to April 30, 2025. 
All series are expressed in percentage points. 
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Figure 2. Time Series of Funding-Rate-Based Measures 

This figure displays the time series of three funding-rate-based measures for Bitcoin perpetual futures 
contracts traded on Binance: the daily average of funding rates (AvgFR, top panel), the daily absolute 
average (AbsFR, middle panel), and the daily standard deviation (StdFR, bottom panel). The sample 
period spans from December 31, 2019 to April 30, 2025. All funding-rate-based measures are multiplied 
by 10,000 and expressed in percentage terms. 
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Table 1. Descriptive Statistics  

Panel A reports summary statistics for realized volatilities (RVs), realized kernels (RKs), their squares, 
and log transformation for Bitcoin spot (Panel A.1) and BTCUSDT perpetual futures (Panel A.2) traded 
on Binance. RV and RK are in percentage points; their squares are in squared percentage points. The 
statistics include mean, standard deviation, skewness, kurtosis, minimum, and maximum, along with p-
values from the Jarque-Bera test (normality) and the Ljung-Box test (autocorrelation, up to 10 lags, 
heteroscedasticity-adjusted). Panel B presents summary statistics for daily funding-rate based measures 
from the perpetual futures market, calculated from three intraday observations. AvgFR and AbsFR are 
the daily average and absolute average across the three funding rates, StdFR is their daily standard 
deviation, and TrendFR is a direction indicator: +1 if rates increase monotonically, -1 if they decrease, 
and 0 otherwise. AvgFR, AbsFR, and TrendFR are multiplied by 10,000 and expressed in percentage 
terms. The sample period spans January 1, 2020 to April 30, 2025. 
 

Panel A: Volatility measures 
 Mean Std. Dev. Skewness Kurtosis Min Max 

Jarque-
Bera 

Ljung-
Box 

Panel A.1: Spot market 
RVଶ 13.132 36.397 19.341 500.981 0.083 1,105.561 0.00 0.00 
RV 3.023 1.999 4.520 44.658 0.288 33.250 0.00 0.00 

Log RV 0.957 0.536 0.064 1.029 -1.245 3.504 0.00 0.00 
RKଶ 11.851 31.532 18.119 444.300 0.098 918.346 0.00 0.00 
RK 2.853 1.926 4.077 37.405 0.313 30.304 0.00 0.00 

Log RK 0.882 0.575 -0.099 0.765 -1.163 3.411 0.00 0.00 
         

Panel A.2: Perpetual futures market 
RVଶ 13.208 36.753 19.922 541.275 0.101 1,157.907 0.00 0.00 
RV 3.031 2.006 4.531 45.102 0.318 34.028 0.00 0.00 

Log RV 0.960 0.534 0.096 0.989 -1.145 3.527 0.00 0.00 
RKଶ 11.912 33.085 19.194 493.587 0.100 998.246 0.00 0.00 
RK 2.851 1.946 4.258 40.983 0.316 31.595 0.00 0.00 

Log RK 0.880 0.577 -0.088 0.765 -1.151 3.453 0.00 0.00 
 

Panel B: Funding-rate-based measures 

Variable Mean 
Std.  
Dev. 

Min P25 P50 P75 Max 

AvgFR (×10,000) 1.254 2.123 -11.041 0.360 0.954 1.000 18.890 
AbsFR (×10,000) 1.406 2.026 0.000 0.455 0.991 1.000 18.890 
StdFR (×10,000) 0.532 0.942 0.000 0.000 0.264 0.592 16.419 
TrendFR -0.012 0.491 -1.000 0.000 0.000 0.000 1.000 
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Table 2. In-Sample Forecasting with Funding-Rate-Based Measures: Linear Specification  

The table presents results from in-sample predictive regressions for Bitcoin spot volatility using 
funding-rate based variables. The following regression model is estimated: 

𝑅𝑉௧,௧ା௛ = 𝛼 + 𝛽ௗ𝑅𝑉௧,ௗ + 𝛽௪𝑅𝑉௧,௪ + 𝛽௠𝑅𝑉௧,௠ + 𝛾஺௩௚ிோ𝐴𝑣𝑔𝐹𝑅௧ + 𝛾஺௕௦ிோ𝐴𝑏𝑠𝐹𝑅௧ + 𝛾ௌ௧ௗிோ𝑆𝑡𝑑𝐹𝑅௧

+ 𝛾்௥௘௡ௗிோ𝑇𝑟𝑒𝑛𝑑𝐹𝑅௧ + 𝜀௧ାଵ, 

where 𝑅𝑉௧,௧ା௛ is the realized volatility over forecast horizon ℎ, and  𝑅𝑉௧,ௗ, 𝑅𝑉௧,௪, and 𝑅𝑉௧,௠ are daily, 

weekly, and monthly past realized volatilities, respectively. AvgFR, AbsFR, StdFR, and TrendFR are 
funding-rate-based measures that summarize the level, dispersion, and direction of intraday funding 
rates, as defined in Table 1. The table reports estimated coefficients and heteroscedasticity- and 
autocorrelation-robust t-statistics (in parentheses). Forecasting horizons correspond to ℎ =1 (Panel A: 
daily),  ℎ = 7 (Panel B: weekly), and ℎ = 30 (Panel C: monthly). The last two rows report the 
adjusted 𝑅ଶand its increase relative to a benchmark HAR model (i.e., the same regression with 𝛾௞ = 0 
for all 𝑘). ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively. 
 
Panel A: Daily forecasting horizon (𝒉 = 𝟏) 

 (1) (2) (3) (4) (5) (6) (7) (8) 
𝛼 0.519*** 0.456*** 0.510*** 0.520*** 0.522*** 0.394*** 0.405*** 0.462*** 
 (6.06) (5.35) (5.98) (6.03) (6.08) (4.54) (4.70) (5.38) 

𝛽ௗ 0.427*** 0.410*** 0.405*** 0.426*** 0.426*** 0.437*** 0.436*** 0.429*** 
 (16.90) (16.38) (15.93) (16.18) (16.84) (16.78) (16.77) (16.46) 

𝛽௪ 0.289*** 0.302*** 0.288*** 0.289*** 0.289*** 0.311*** 0.304*** 0.285*** 
 (7.92) (8.37) (7.93) (7.92) (7.91) (8.53) (8.44) (7.88) 

𝛽௠ 0.087** 0.067** 0.074** 0.087** 0.087** 0.071** 0.072** 0.078** 
 (2.54) (1.98) (2.15) (2.53) (2.55) (2.09) (2.12) (2.29) 

𝛾஺௩௚ிோ  0.109***    0.187*** 0.139***  
  (6.84)    (4.50) (7.73)  

𝛾஺௕௦ிோ   0.088***   -0.066  0.142*** 
   (5.02)   (-1.29)  (6.38) 

𝛾ௌ௧ௗிோ    0.002  -0.122** -0.159*** -0.199*** 
    (0.04)  (-2.29) (-3.55) (-3.92) 

𝛾்௥௘௡ௗிோ     -0.050 -0.039   
     (-0.72) (-0.57)   

𝐴𝑑𝑗. 𝑅ଶ 45.47 46.74 46.15 45.44 45.45 47.06 47.06 46.55 
∆ 𝐴𝑑𝑗. 𝑅ଶ  1.27 0.68 -0.03 -0.01 1.60 1.60 1.08 
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Table 2 —Continued 

Panel B: Weekly forecasting horizon (𝒉 = 𝟕) 

 (1) (2) (3) (4) (5) (6) (7) (8) 

𝛼 1.080*** 0.980*** 1.061*** 1.118*** 1.078*** 0.975*** 0.969*** 1.032*** 
 (13.73) (12.85) (13.92) (14.21) (13.69) (12.51) (12.53) (13.42) 

𝛽ௗ 0.273*** 0.247*** 0.230*** 0.241*** 0.274*** 0.252*** 0.253*** 0.245*** 
 (11.79) (11.03) (10.12) (10.01) (11.81) (10.81) (10.85) (10.48) 

𝛽௪ 0.222*** 0.243*** 0.219*** 0.224*** 0.222*** 0.239*** 0.243*** 0.218*** 
 (6.62) (7.52) (6.76) (6.72) (6.63) (7.30) (7.53) (6.72) 

𝛽௠ 0.174*** 0.142*** 0.147*** 0.163*** 0.174*** 0.144*** 0.143*** 0.150*** 
 (5.55) (4.69) (4.82) (5.21) (5.54) (4.73) (4.72) (4.91) 

𝛾஺௩௚ிோ  0.175***    0.147*** 0.181***  
  (12.24)    (3.95) (11.24)  

𝛾஺௕௦ிோ   0.177***   0.047  0.210*** 
   (11.29)   (1.02)  (10.54) 

𝛾ௌ௧ௗிோ    0.175***  -0.061 -0.035 -0.122*** 
    (4.77)  (-1.27) (-0.87) (-2.67) 

𝛾்௥௘௡ௗிோ     0.043 0.063   
     (0.68) (1.02)   

𝐴𝑑𝑗. 𝑅ଶ 37.44 41.95 41.32 38.14 37.42 41.95 41.95 41.51 
∆ 𝐴𝑑𝑗. 𝑅ଶ  4.52 3.88 0.70 -0.02 4.51 4.51 4.07 

 
Panel C: Monthly forecasting horizon (𝒉 = 𝟑𝟎) 

 (1) (2) (3) (4) (5) (6) (7) (8) 

𝛼 1.754*** 1.629*** 1.731*** 1.822*** 1.758*** 1.652*** 1.655*** 1.732*** 
 (23.90) (23.65) (25.02) (25.26) (23.94) (23.50) (23.72) (24.78) 

𝛽ௗ 0.134*** 0.102*** 0.080*** 0.075*** 0.133*** 0.089*** 0.089*** 0.079*** 
 (6.20) (5.03) (3.89) (3.40) (6.13) (4.20) (4.22) (3.74) 

𝛽௪ 0.123*** 0.150*** 0.120*** 0.127*** 0.123*** 0.152*** 0.149*** 0.120*** 
 (3.95) (5.13) (4.09) (4.15) (3.94) (5.15) (5.10) (4.09) 

𝛽௠ 0.231*** 0.191*** 0.196*** 0.210*** 0.231*** 0.188*** 0.188*** 0.196*** 
 (7.86) (6.94) (7.08) (7.32) (7.88) (6.84) (6.85) (7.07) 

𝛾஺௩௚ிோ  0.218***    0.226*** 0.203***  
  (16.95)    (6.72) (13.96)  

𝛾஺௕௦ிோ   0.222***   -0.032  0.219*** 
   (15.58)   (-0.78)  (12.12) 

𝛾ௌ௧ௗிோ    0.318***  0.100** 0.082** 0.008 
    (9.43)  (2.33) (2.27) (0.18) 

𝛾்௥௘௡ௗிோ     -0.084 -0.059   
     (-1.42) (-1.06)   

𝐴𝑑𝑗. 𝑅ଶ 24.10 33.98 32.62 27.44 24.14 34.11 34.12 32.58 
∆ 𝐴𝑑𝑗. 𝑅ଶ  9.88 8.51 3.34 0.04 10.01 10.02 8.48 
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Table 3. In-Sample Forecasting with Funding Rates: Log-Linear Specification  

The table presents results from in-sample predictive regressions for Bitcoin spot log volatility using 
funding-rate based variables. The following log-linear regression model is estimated: 

ln൫𝑅𝑉௧,௧ା௛൯ = 𝛼 + 𝛽ௗ ln൫𝑅𝑉௧,ௗ൯ + 𝛽௪ ln൫𝑅𝑉௧,௪൯ + 𝛽௠ ln൫𝑅𝑉௧,௠൯ + 𝛾஺௩௚ிோ𝐴𝑣𝑔𝐹𝑅௧ + 𝛾஺௕௦ிோ𝐴𝑏𝑠𝐹𝑅௧

+ 𝛾ௌ௧ௗிோ𝑆𝑡𝑑𝐹𝑅௧ + 𝛾்௥௘௡ௗிோ𝑇𝑟𝑒𝑛𝑑𝐹𝑅௧ + 𝜀௧ାଵ, 

where ln൫𝑅𝑉௧,௧ା௛൯ is the log of realized volatility over forecast horizon ℎ, and ln൫𝑅𝑉௧,ௗ൯,  ln൫𝑅𝑉௧,௪൯, 

and ln൫𝑅𝑉௧,௠൯ are the logs of daily, weekly, and monthly past realized volatilities, respectively. AvgFR, 

AbsFR, StdFR, and TrendFR are funding-rate-based measures that summarize the level, dispersion, and 
direction of intraday funding rates, as defined in Table 1. The table reports estimated coefficients and 
heteroscedasticity- and autocorrelation-robust t-statistics (in parentheses). Forecasting horizons 
correspond to ℎ =1 (Panel A: daily), ℎ =7 (Panel B: weekly), and ℎ =30 (Panel C: monthly). The last 
two rows report the adjusted 𝑅ଶand its increase relative to a benchmark log HAR model (i.e., the same 
regression with 𝛾௞ = 0 for all 𝑘). ***, **, and * denote statistical significance at the 1%, 5%, and 10% 
levels, respectively. 
 
Panel A: Daily forecasting horizon (𝒉 = 𝟏) 

 (1) (2) (3) (4) (5) (6) (7) (8) 

𝛼 0.036 0.030 0.038 0.041 0.035 0.030 0.030 0.035 
 (1.35) (1.14) (1.45) (1.55) (1.33) (1.11) (1.11) (1.33) 

𝛽ௗ 0.431*** 0.417*** 0.415*** 0.422*** 0.431*** 0.418*** 0.418*** 0.418*** 
 (17.60) (17.05) (16.89) (17.03) (17.60) (16.91) (16.91) (16.90) 

𝛽௪ 0.367*** 0.369*** 0.362*** 0.366*** 0.368*** 0.368*** 0.369*** 0.362*** 
 (9.54) (9.63) (9.44) (9.49) (9.54) (9.57) (9.62) (9.44) 

𝛽௠ 0.106*** 0.099*** 0.098*** 0.101*** 0.106*** 0.099*** 0.100*** 0.099*** 
 (2.93) (2.77) (2.72) (2.79) (2.92) (2.76) (2.77) (2.76) 

𝛾஺௩௚ிோ  0.019***    0.017* 0.020***  
  (4.93)    (1.73) (4.48)  

𝛾஺௕௦ிோ   0.019***   0.004  0.023*** 
   (4.52)   (0.29)  (4.14) 

𝛾ௌ௧ௗிோ    0.019**  -0.003 -0.001 -0.012 
    (2.05)  (-0.27) (-0.13) (-0.97) 

𝛾்௥௘௡ௗிோ     0.007 0.009   
     (0.44) (0.55)   

𝐴𝑑𝑗. 𝑅ଶ 55.13 55.67 55.58 55.20 55.11 55.61 55.65 55.58 
∆ 𝐴𝑑𝑗. 𝑅ଶ  0.54 0.45 0.08 -0.02 0.48 0.52 0.45 
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Table 3 —Continued 

Panel B: Weekly forecasting horizon (𝒉 = 𝟕) 

 (1) (2) (3) (4) (5) (6) (7) (8) 

𝛼 0.304*** 0.294*** 0.309*** 0.317*** 0.303*** 0.302*** 0.298*** 0.306*** 
 (13.14) (13.05) (13.76) (13.76) (13.10) (13.26) (13.12) (13.54) 

𝛽ௗ 0.231*** 0.207*** 0.200*** 0.210*** 0.232*** 0.203*** 0.203*** 0.202*** 
 (10.78) (9.85) (9.49) (9.76) (10.81) (9.59) (9.59) (9.56) 

𝛽௪ 0.325*** 0.327*** 0.314*** 0.321*** 0.326*** 0.319*** 0.326*** 0.314*** 
 (9.63) (9.97) (9.58) (9.58) (9.65) (9.69) (9.92) (9.58) 

𝛽௠ 0.168*** 0.157*** 0.152*** 0.156*** 0.168*** 0.153*** 0.154*** 0.154*** 
 (5.32) (5.09) (4.94) (4.96) (5.31) (4.98) (5.00) (4.99) 

𝛾஺௩௚ிோ  0.035***    0.012 0.033***  
  (10.39)    (1.43) (8.73)  

𝛾஺௕௦ிோ   0.039***   0.029***  0.042*** 
   (10.69)   (2.76)  (9.05) 

𝛾ௌ௧ௗிோ    0.047***  -0.005 0.012 -0.011 
    (5.68)  (-0.49) (1.36) (-1.11) 

𝛾்௥௘௡ௗிோ     0.015 0.019   
     (1.05) (1.34)   

𝐴𝑑𝑗. 𝑅ଶ 47.52 50.29 50.45 48.36 47.52 50.51 50.32 50.46 
∆ 𝐴𝑑𝑗. 𝑅ଶ  2.78 2.94 0.84 0.00 2.99 2.80 2.94 

 
Panel C: Monthly forecasting horizon (𝒉 = 𝟑𝟎) 

 (1) (2) (3) (4) (5) (6) (7) (8) 

𝛼 0.562*** 0.549*** 0.569*** 0.582*** 0.563*** 0.560*** 0.557*** 0.569*** 
 (24.62) (25.28) (26.19) (25.87) (24.63) (25.53) (25.51) (26.04) 

𝛽ௗ 0.144*** 0.111*** 0.103*** 0.113*** 0.143*** 0.102*** 0.103*** 0.103*** 
 (6.79) (5.50) (5.09) (5.36) (6.76) (5.02) (5.06) (5.04) 

𝛽௪ 0.173*** 0.176*** 0.159*** 0.166*** 0.172*** 0.170*** 0.173*** 0.159*** 
 (5.19) (5.56) (5.01) (5.09) (5.17) (5.35) (5.49) (5.01) 

𝛽௠ 0.214*** 0.199*** 0.193*** 0.196*** 0.214*** 0.193*** 0.194*** 0.193*** 
 (6.86) (6.70) (6.50) (6.38) (6.87) (6.53) (6.53) (6.48) 

𝛾஺௩௚ிோ  0.047***    0.034*** 0.042***  
  (14.50)    (4.16) (11.72)  

𝛾஺௕௦ிோ   0.050***   0.012  0.049*** 
   (14.24)   (1.18)  (10.97) 

𝛾ௌ௧ௗிோ    0.070***  0.019* 0.026*** 0.003 
    (8.81)  (1.75) (3.02) (0.25) 

𝛾்௥௘௡ௗிோ     -0.013 -0.007   
     (-0.87) (-0.54)   

𝐴𝑑𝑗. 𝑅ଶ 31.21 37.99 37.77 33.85 31.20 38.24 38.26 37.74 
∆ 𝐴𝑑𝑗. 𝑅ଶ  6.79 6.57 2.65 -0.01 7.04 7.05 6.54 



40 

Table 4. Out-of-Sample Forecasting with Funding Rates  

The table presents out-of-sample forecasting performance for Bitcoin spot volatility using funding-rate based variables. Panel A reports results from linear 
forecasting regressions, and Panel B reports results from log-linear regressions. For each panel, we consider five models: a benchmark HAR model using 
lagged realized volatility at daily, weekly, and monthly frequencies; three models that augment the HAR specification with a single funding-rate-based 
measure (AvgFR, AbsFR, or StdFR); and a Kitchen Sink model including all three measures. Forecasting models are estimated using a recursive procedure 
with an initial sample of 180 days of data. The table reports average losses based on MSE, MAPE, and QLIKE. It also presents the Giacomini-White (GW) 
test statistics for equal predictive accuracy, comparing each model to the HAR benchmark. Positive and statistically significant GW values indicate superior 
forecasting performance relative to the HAR model. Clark and West (CW) test statistics assess Granger causality from each funding-rate-based measure to 
volatility; significance indicates rejection of the null of no causality. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively. 
 
Panel A: Linear Specification 

Horizon Daily  Weekly  Monthly 
Model HAR AvgFR AbsFR StdFR Sink  HAR AvgFR AbsFR StdFR Sink  HAR AvgFR AbsFR StdFR Sink 
Average Loss 

MSE 0.585 0.561 0.572 0.601 0.579  0.429 0.379 0.385 0.422 0.383  0.430 0.363 0.371 0.407 0.363 
MAPE 0.877 0.825 0.847 0.894 0.844  0.709 0.625 0.634 0.695 0.631  0.772 0.671 0.677 0.733 0.673 
QLIKE -5.673 -5.742 -5.714 -5.661 -5.724  -5.598 -5.688 -5.680 -5.614 -5.681  -5.353 -5.461 -5.456 -5.396 -5.459 

GW tests on Loss Differences Relative to the Benchmark HAR model 
MSE  5.71*** 5.07*** -4.39*** 1.00   11.58*** 11.72*** 5.18*** 9.72***   13.78*** 14.13*** 11.28*** 13.42*** 

MAPE  9.90*** 9.41*** -7.06*** 4.60***   17.54*** 18.58*** 8.00*** 14.46***   14.63*** 16.18*** 13.19*** 13.93*** 
QLIKE  12.99*** 13.10*** -4.80*** 6.88***   18.77*** 20.32*** 9.55*** 15.26***   14.87*** 16.74*** 14.46*** 14.23*** 

Testing for Granger causality 
CW tests  9.00*** 11.17*** 4.94*** 8.28***   10.01*** 11.14*** 7.62*** 9.00***   8.90*** 9.62*** 12.40*** 8.65*** 
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Table 4 —Continued 

Panel B: Log-Linear Specification 

Horizon Daily  Weekly  Monthly 
Model HAR AvgFR AbsFR StdFR Sink  HAR AvgFR AbsFR StdFR Sink  HAR AvgFR AbsFR StdFR Sink 
Average Loss 

MSE 0.523 0.517 0.517 0.522 0.518  0.366 0.343 0.342 0.359 0.343  0.342 0.306 0.307 0.326 0.306 
MAPE 0.670 0.657 0.656 0.667 0.660  0.520 0.487 0.482 0.508 0.485  0.605 0.554 0.548 0.579 0.553 
QLIKE -5.969 -5.987 -5.989 -5.975 -5.984  -5.856 -5.893 -5.901 -5.871 -5.896  -5.602 -5.654 -5.664 -5.632 -5.658 

GW tests on Loss Differences Relative to the Benchmark HAR model 
MSE 2.71*** 3.02*** 1.60 1.94*   7.71*** 7.75*** 7.58*** 6.66***   9.96*** 10.00*** 9.76*** 8.96*** 

MAPE 5.71*** 7.17*** 5.90*** 4.14***   11.95*** 12.88*** 11.88*** 10.56***   10.39*** 12.07*** 11.82*** 9.24*** 
QLIKE 7.78*** 10.55*** 10.65*** 5.98***   12.91*** 15.17*** 14.09*** 11.89***   9.86*** 12.21*** 13.43*** 9.21*** 

Testing for Granger causality 
 CW test  6.01*** 5.99*** 3.88*** 4.98***   10.79*** 11.96*** 12.41*** 9.71***   11.32*** 12.29*** 16.62*** 11.21*** 
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Table 5. Out-of-Sample Forecasting with Funding Rates: High vs. Low Perpetual Trading Volume 

The table compares out-of-sample volatility forecasting performance of funding-rate-based models across periods of high and low perpetual trading volume. 
Panel A presents results from linear regressions, while Panel B corresponds to log-linear specifications. The models follow the same structure as in Table 4, 
including a benchmark HAR model, three HAR extensions using AvgFR, AbsFR, or StdFR individually, and a Kitchen Sink model combining all three. 
Perpetual trading volume is measured relative to spot trading volume as the ratio of 30-day aggregated perpetual futures volume to spot market volume. The 
sample is split into high- and low-volume periods based on the median value of this ratio. Forecasting models are estimated recursively with an initial window 
of 180 days. The table reports average losses (MSE, MAPE, and QLIKE), GW test statistics comparing each model to the HAR benchmark, and CW test 
statistics for Granger causality from funding-rate-based measures to volatility. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels. 
Panel A: Linear Specification 
Horizon Daily  Weekly  Monthly 
Model HAR AvgFR AbsFR StdFR Sink  HAR AvgFR AbsFR StdFR Sink  HAR AvgFR AbsFR StdFR Sink 

High-Volume Periods 
Average Loss 

MSE 0.660 0.636 0.644 0.662 0.643  0.385 0.338 0.337 0.372 0.341  0.383 0.309 0.313 0.356 0.311 
MAPE 0.989 0.925 0.950 0.992 0.931  0.684 0.592 0.598 0.663 0.595  0.762 0.645 0.651 0.719 0.646 
QLIKE -5.784 -5.870 -5.838 -5.779 -5.864  -5.801 -5.911 -5.900 -5.826 -5.908  -5.540 -5.676 -5.664 -5.590 -5.676 

GW tests on Loss Differences Relative to the Benchmark HAR model 
MSE  4.89*** 5.24*** -3.38*** 2.26**   10.73*** 12.39*** 8.83*** 9.28***   18.85*** 19.06*** 10.40*** 18.68*** 

MAPE  9.94*** 9.06*** -4.86*** 6.88***   18.24*** 18.07*** 10.83*** 16.53***   18.92*** 19.06*** 10.36*** 18.91*** 
QLIKE  14.09*** 13.11*** -7.30*** 9.46***   22.92*** 21.76*** 12.38*** 20.67***   21.98*** 21.11*** 11.88*** 22.41*** 

CW test  14.38*** 15.77*** 8.37*** 6.36***   14.71*** 16.02*** 10.80*** 12.77***   14.74*** 15.60*** 11.43*** 11.61*** 
Low-Volume Periods 

Average Loss 
MSE 0.509 0.486 0.501 0.541 0.514  0.472 0.420 0.433 0.472 0.424  0.477 0.417 0.430 0.458 0.416 

MAPE 0.765 0.724 0.744 0.796 0.758  0.733 0.658 0.669 0.727 0.666  0.781 0.698 0.704 0.747 0.700 
QLIKE -5.563 -5.614 -5.591 -5.542 -5.584  -5.395 -5.465 -5.460 -5.403 -5.455  -5.166 -5.247 -5.248 -5.203 -5.242 

GW tests on Loss Differences Relative to the Benchmark HAR model 
MSE  3.50*** 2.20** -4.21*** -0.44   7.08*** 6.19*** 0.14 5.85***   6.77*** 6.39*** 6.02*** 6.66*** 

MAPE  4.89*** 4.46*** -6.54*** 0.60   9.26*** 9.82*** 2.03** 7.16***   6.84*** 7.67*** 8.30*** 6.39*** 
QLIKE  5.96*** 5.99*** -3.96*** 1.75*   8.49*** 9.80*** 2.93*** 6.26***   6.17*** 7.63*** 8.64*** 5.62*** 

CW test  7.73*** 8.58*** 4.95***  5.43***   8.02*** 8.61*** 5.28*** 7.39***   7.56*** 8.03*** 9.04*** 7.31*** 
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Table 5 —Continued 

Panel B: Log-Linear Specification 
Horizon Daily  Weekly  Monthly 
Model HAR AvgFR AbsFR StdFR Sink  HAR AvgFR AbsFR StdFR Sink  HAR AvgFR AbsFR StdFR Sink 

High-Volume Periods 
Average Loss 

MSE 0.594 0.588 0.588 0.592 0.589  0.337 0.315 0.310 0.327 0.312  0.284 0.244 0.240 0.264 0.241 
MAPE 0.754 0.736 0.737 0.749 0.737  0.510 0.470 0.464 0.494 0.465  0.593 0.530 0.523 0.563 0.527 
QLIKE -6.117 -6.145 -6.144 -6.124 -6.144  -6.049 -6.099 -6.106 -6.068 -6.105  -5.797 -5.871 -5.875 -5.831 -5.876 

GW tests on Loss Differences Relative to the Benchmark HAR model 
MSE_LOG  2.81*** 3.09*** 3.40*** 2.42**   7.97*** 8.96*** 7.73*** 8.43***   14.70*** 15.45*** 10.60*** 14.71*** 

MAPE  6.83*** 6.71*** 6.96*** 6.45***   13.18*** 13.47*** 10.65*** 13.33***   14.30*** 15.36*** 10.59*** 14.40*** 
QLIKE  11.05*** 11.27*** 10.25*** 10.46***   17.26*** 17.31*** 12.64*** 17.53***   17.46*** 17.59*** 12.25*** 17.69*** 

CW test  11.32*** 11.47*** 4.87*** 10.84***   14.17*** 16.17*** 12.29*** 15.34***   14.76*** 16.93*** 14.90*** 14.86*** 
Low-Volume Periods 

Average Loss 
MSE 0.451 0.445 0.446 0.451 0.447  0.394 0.371 0.373 0.391 0.373  0.399 0.369 0.374 0.387 0.371 

MAPE 0.586 0.579 0.575 0.585 0.584  0.531 0.504 0.500 0.522 0.504  0.618 0.578 0.572 0.595 0.579 
QLIKE -5.822 -5.829 -5.835 -5.825 -5.824  -5.664 -5.686 -5.697 -5.674 -5.688  -5.408 -5.438 -5.453 -5.434 -5.440 

GW tests on Loss Differences Relative to the Benchmark HAR model 
MSE  1.47 1.56 -1.11 0.90   4.42*** 3.81*** 2.77*** 3.32***   4.65*** 3.96*** 4.53*** 3.83*** 

MAPE  2.07** 3.73*** 1.23 0.70   5.70*** 6.31*** 6.08*** 4.50***   4.56*** 5.45*** 6.67*** 3.75*** 
QLIKE  1.94* 4.59*** 4.74*** 0.65   4.71*** 6.79*** 7.28*** 4.13***   3.10*** 4.98*** 7.43*** 2.88*** 

CW test  4.99*** 4.76*** 2.75*** 4.23***   8.08*** 8.69*** 7.03*** 7.47***   8.93*** 9.50*** 11.04*** 8.88*** 
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Table 6. Out-of-Sample Forecasting with Funding Rates: Realized Kernel as Volatility Proxy 

This table replicates the out-of-sample forecasting analysis in Table 5 using realized kernel as the volatility proxy instead of realized volatility. Forecasting 
models include the benchmark HAR, single-variable HAR extensions using AvgFR, AbsFR, or StdFR, and a Kitchen Sink model combining all three 
funding-rate-based measures. All models are estimated recursively with an initial window of 180 days. The table reports average losses (MSE, MAPE, 
QLIKE), Giacomini-White (GW) test statistics comparing each model to the HAR benchmark, and CW test statistics for Granger causality. ***, **, and * 

indicate statistical significance at the 1%, 5%, and 10% levels, respectively. 
 

Horizon Daily  Weekly  Monthly 
Model HAR AvgFR AbsFR StdFR Sink  HAR AvgFR AbsFR StdFR Sink  HAR AvgFR AbsFR StdFR Sink 

High-Volume Periods 
Average Loss 

MSE 0.860 0.835 0.844 0.865 0.845  0.375 0.336 0.337 0.365 0.340  0.387 0.318 0.324 0.362 0.319 
MAPE 1.313 1.237 1.269 1.322 1.245  0.688 0.609 0.616 0.670 0.613  0.768 0.660 0.669 0.729 0.662 
QLIKE -5.638 -5.733 -5.694 -5.626 -5.724  -5.882 -5.983 -5.970 -5.903 -5.978  -5.628 -5.759 -5.745 -5.676 -5.759 

GW tests on Loss Differences Relative to the Benchmark HAR model 
MSE  4.77*** 5.06*** -4.23*** 1.78*   9.39*** 11.12*** 8.41*** 7.55***   18.32*** 18.37*** 10.55*** 17.97*** 

MAPE  8.80*** 8.52*** -5.51*** 5.38***   16.26*** 16.48*** 11.22*** 14.18***   17.63*** 17.76*** 10.47*** 17.66*** 
QLIKE  11.39*** 11.08*** -7.25*** 6.81***   22.32*** 21.77*** 13.34*** 19.42***   22.14*** 21.54*** 12.89*** 22.62*** 

CW test  14.45*** 16.69*** 11.22*** 5.92***   14.73*** 16.90*** 12.01*** 11.96***   14.87*** 16.29*** 13.37*** 10.99*** 
Low-Volume Periods 

Average Loss 
MSE 0.695 0.672 0.689 0.737 0.703  0.478 0.434 0.446 0.479 0.437  0.444 0.393 0.404 0.427 0.393 

MAPE 1.027 0.978 1.009 1.067 1.010  0.736 0.674 0.684 0.733 0.680  0.737 0.669 0.673 0.705 0.670 
QLIKE -5.483 -5.542 -5.507 -5.450 -5.507  -5.489 -5.548 -5.543 -5.494 -5.538  -5.300 -5.365 -5.369 -5.335 -5.360 

GW tests on Loss Differences Relative to the Benchmark HAR model 
MSE  2.94*** 1.26 -3.24*** -0.72   6.09*** 5.17*** -0.69 5.19***   5.61*** 5.10*** 5.22*** 5.48*** 

MAPE  4.60*** 2.96*** -5.95*** 1.18   7.91*** 8.18*** 1.11 6.21***   5.43*** 6.07*** 7.46*** 5.05*** 
QLIKE  5.53*** 4.05*** -4.53*** 1.64   7.37*** 8.51*** 1.86* 5.30***   4.87*** 6.21*** 8.10*** 4.37*** 

CW test  7.48*** 8.55*** 4.93*** 7.17***   7.69*** 8.18*** 4.41*** 7.25***   7.41*** 7.74*** 9.16*** 7.19*** 
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Table 7. Out-of-Sample Forecasting with Funding Rates: Robustness to Estimation Methods 

This table evaluates the robustness of the out-of-sample forecasting results in Table 5 to alternative estimation methods. Panel A reports results based on 
recursive estimation with an initial window of 365 days, while Panel B uses rolling estimation with a window size of 180 days. The forecasting models are 
estimated in linear specifications, and the model structure and evaluation metrics follow the same structure as in Table 5. The table reports average forecast 
losses (MSE, MAPE, and QLIKE), GW test statistics comparing each model to the benchmark HAR, and CW test statistics for Granger causality from 
funding-rate-based measures to volatility. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively. 
 

Panel A: Recursive estimation with an initial sample of 365 days 

Horizon Daily  Weekly  Monthly 
Model HAR AvgFR AbsFR StdFR Sink  HAR AvgFR AbsFR StdFR Sink  HAR AvgFR AbsFR StdFR Sink 

High-Volume Periods 
Average Loss 

MSE 0.682 0.657 0.665 0.684 0.663  0.402 0.353 0.352 0.390 0.356  0.404 0.324 0.329 0.376 0.325 
MAPE 1.020 0.953 0.980 1.023 0.956  0.706 0.609 0.617 0.686 0.612  0.795 0.667 0.675 0.751 0.669 
QLIKE -5.782 -5.873 -5.839 -5.778 -5.871  -5.806 -5.923 -5.910 -5.830 -5.921  -5.535 -5.680 -5.665 -5.584 -5.680 

GW tests on Loss Differences Relative to the Benchmark HAR model 
MSE  4.75*** 5.09*** -3.16*** 2.25***   10.24*** 11.88*** 7.54*** 8.83***   19.03*** 19.03*** 9.45*** 18.78*** 

MAPE  9.59*** 8.64*** -4.21*** 6.88***   17.70*** 17.46*** 9.32*** 16.12***   19.68*** 19.55*** 9.68*** 19.69*** 
QLIKE  13.76*** 12.67*** -6.46*** 9.53***   22.82*** 21.40*** 11.15*** 20.66***   22.56*** 21.40*** 10.99*** 23.00*** 

CW test  13.55*** 14.82*** 8.20*** 6.14***   13.99*** 15.21*** 10.25*** 11.98***   14.09*** 14.85*** 10.83*** 10.86*** 
Low-Volume Periods 

Average Loss 
MSE 0.522 0.501 0.507 0.531 0.510  0.452 0.406 0.413 0.443 0.407  0.408 0.356 0.362 0.385 0.353 

MAPE 0.795 0.750 0.761 0.801 0.763  0.713 0.633 0.640 0.696 0.637  0.717 0.633 0.637 0.678 0.634 
QLIKE -5.571 -5.627 -5.614 -5.569 -5.611  -5.436 -5.519 -5.515 -5.456 -5.514  -5.244 -5.338 -5.334 -5.286 -5.335 

GW tests on Loss Differences Relative to the Benchmark HAR model 
MSE  3.36*** 4.03*** -2.77*** 1.61   6.22*** 5.73*** 6.40*** 5.64***   8.20*** 8.22*** 7.70*** 8.68*** 

MAPE  5.70*** 7.27*** -3.45*** 3.39***   9.55*** 10.05*** 9.30*** 8.46***   9.20*** 10.08*** 9.23*** 9.14*** 
QLIKE  7.10*** 9.32*** -1.04 4.14***   9.88*** 10.82*** 11.10*** 8.63***   9.54*** 10.41*** 9.80*** 9.25*** 

CW test  6.44*** 7.82*** 3.22*** 5.39***   7.54*** 8.37*** 11.88*** 6.96***   6.89*** 7.21*** 8.45*** 6.77*** 
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Table 7 —Continued 

Panel B: Rolling estimation with a estimation window of 180 days  

Horizon Daily  Weekly  Monthly 
Model HAR AvgFR AbsFR StdFR Sink  HAR AvgFR AbsFR StdFR Sink  HAR AvgFR AbsFR StdFR Sink 

High-Volume Periods 
Average Loss 

MSE 0.630 0.625 0.625 0.627 0.649  0.315 0.278 0.277 0.303 0.292  0.222 0.190 0.192 0.213 0.191 
MAPE 0.866 0.853 0.852 0.852 0.877  0.501 0.449 0.449 0.482 0.464  0.469 0.421 0.424 0.453 0.423 
QLIKE -5.968 -5.987 -5.990 -5.989 -5.972  -6.074 -6.123 -6.120 -6.093 -6.109  -6.000 -6.030 -6.025 -6.012 -6.029 

GW tests on Loss Differences Relative to the Benchmark HAR model 
MSE  0.85 0.89 0.56 -1.98*   5.74*** 5.95*** 2.89*** 2.61***   10.20*** 9.74*** 5.63*** 8.17*** 

MAPE  1.68* 2.01** 2.69*** -0.83   8.25*** 8.45*** 4.81*** 3.35***   12.94*** 12.66*** 7.44*** 9.30*** 
QLIKE  2.44** 3.01*** 3.95*** 0.28   7.49*** 6.96*** 4.83*** 3.17***   6.33*** 5.37*** 5.06*** 4.63*** 

CW test  9.30*** 9.09*** 6.43*** 5.83***   9.47*** 8.88*** 4.45*** 9.35***   6.86*** 6.33*** 5.25*** 5.20*** 
Low-Volume Periods 

Average Loss 
MSE 0.491 0.510 0.514 0.531 0.550  0.419 0.438 0.434 0.424 0.447  0.339 0.368 0.370 0.343 0.376 

MAPE 0.713 0.746 0.740 0.748 0.787  0.624 0.655 0.647 0.627 0.666  0.563 0.601 0.602 0.569 0.612 
QLIKE -5.640 -5.609 -5.620 -5.616 -5.580  -5.547 -5.514 -5.522 -5.545 -5.504  -5.482 -5.436 -5.437 -5.478 -5.428 

GW tests on Loss Differences Relative to the Benchmark HAR model 
MSE  -2.67*** -3.18*** -3.15*** -5.21***   -2.64*** -1.96* -1.21 -3.16***   -4.09*** -4.41*** -1.36 -4.47*** 

MAPE  -3.56*** -3.32*** -4.43*** -5.62***   -3.14*** -2.37** -0.62 -3.50***   -3.74*** -3.88*** -1.55 -4.11*** 
QLIKE  -3.27*** -2.37** -2.90*** -4.48***   -3.36*** -2.53** -0.31 -3.47***   -4.42*** -4.39*** -1.10 -4.44*** 

CW test  8.22*** 7.71*** 5.30*** 9.23***   8.93*** 8.04*** 7.78*** 8.64***   5.28*** 4.71*** 6.20*** 5.28*** 
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Table 8. In-Sample Forecasting with Perpetual Market Volatility 

The table presents results from in-sample predictive regressions for Bitcoin spot volatility using volatility differentials between the spot and perpetual futures 
markets. Panel A reports results from the linear specification: 

𝑅𝑉௧,௧ା௛ = 𝛼 + 𝛽ௗ𝑅𝑉௧,ௗ + 𝛽௪𝑅𝑉௧,௪ + 𝛽௠𝑅𝑉௧,௠ + 𝛿ௗ൫𝑅𝑉௧,ௗ − 𝑅𝑉௧,ௗ
௣௘௥௣

൯ + 𝛿௪൫𝑅𝑉௧,௪ − 𝑅𝑉௧,௪
௣௘௥௣

൯ + 𝛿௠൫𝑅𝑉௧,௠ − 𝑅𝑉௧,௠
௣௘௥௣

൯ + 𝜀௧ାଵ. 

Panel B reports results from the log-linear specification: 

ln൫𝑅𝑉௧,௧ା௛൯ = 𝛼 + 𝛽ௗ ln൫𝑅𝑉௧,ௗ൯ + 𝛽௪ ln൫𝑅𝑉௧,௪൯ + 𝛽௠ ln൫𝑅𝑉௧,௠൯ + 𝛿ௗ ln൫𝑅𝑉௧,ௗ/𝑅𝑉௧,ௗ
௣௘௥௣

൯ + 𝛿௪ ln൫𝑅𝑉௧,௪/𝑅𝑉௧,௪
௣௘௥௣

൯ + 𝛿௠ ln൫𝑅𝑉௧,௠/𝑅𝑉௧,௠
௣௘௥௣

൯ + 𝜀௧ାଵ. 

𝑅𝑉௧ା௛ denotes the realized spot volatility at horizon ℎ, while  𝑅𝑉௧,ௗ, 𝑅𝑉௧,௪, 𝑅𝑉௧,௠ and 𝑅𝑉௧,ௗ
௣௘௥௣, 𝑅𝑉௧,௪

௣௘௥௣, 𝑅𝑉௧,௠
௣௘௥௣ denote past realized volatilities from the 

spot and perpetual markets, respectively, at daily, weekly, and monthly frequencies. Forecast horizons correspond to ℎ =1 (daily), ℎ =7 (weekly), and ℎ =30 
(monthly). The table reports estimated coefficients and robust t-statistics (in parentheses). The last two rows report the adjusted 𝑅ଶand its increase over the 
benchmark HAR model (i.e., excluding the volatility differential terms). ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively. 
Panel A: Linear Specification 

Horizon Daily  Weekly  Monthly 
 (1) (2) (3) (4) (5)  (6) (7) (8) (9) (10)  (11) (12) (13) (14) (15) 

𝛼 0.519*** 0.519*** 0.551*** 0.591*** 0.589***  1.080*** 1.104*** 1.135*** 1.193*** 1.197***  1.754*** 1.789*** 1.834*** 1.899*** 1.906*** 
 (6.06) (6.01) (6.31) (6.63) (6.60)  (13.73) (13.95) (14.20) (14.65) (14.68)  (23.90) (24.31) (24.72) (25.13) (25.23) 

𝛽ௗ 0.427*** 0.427*** 0.425*** 0.423*** 0.419***  0.273*** 0.280*** 0.270*** 0.268*** 0.271***  0.134*** 0.145*** 0.130*** 0.128*** 0.132*** 
 (16.90) (16.76) (16.83) (16.78) (16.40)  (11.79) (12.03) (11.70) (11.63) (11.63)  (6.21) (6.68) (6.05) (5.97) (6.13) 

𝛽௪ 0.289*** 0.289*** 0.296*** 0.291*** 0.296***  0.222*** 0.218*** 0.234*** 0.225*** 0.224***  0.123*** 0.118*** 0.141*** 0.127*** 0.129*** 
 (7.92) (7.91) (8.08) (7.99) (8.02)  (6.62) (6.51) (6.98) (6.75) (6.66)  (3.95) (3.78) (4.54) (4.12) (4.13) 

𝛽௠ 0.087** 0.087** 0.076** 0.075** 0.074**  0.174*** 0.166*** 0.155*** 0.155*** 0.151***  0.231*** 0.219*** 0.202*** 0.205*** 0.197*** 
 (2.54) (2.53) (2.18) (2.17) (2.14)  (5.55) (5.27) (4.86) (4.91) (4.76)  (7.86) (7.45) (6.82) (7.03) (6.71) 

𝛿ௗ  -0.004   -0.405   0.803**   0.344   1.187***   0.522 
  (-0.01)   (-1.04)   (2.54)   (0.96)   (4.04)   (1.58) 

𝛿௪   0.856*  0.382    1.485***  0.199    2.167***  0.614 
   (1.88)  (0.62)    (3.56)  (0.35)    (5.60)  (1.18) 

𝛿௠    1.635*** 1.542**     2.573*** 2.265***     3.289*** 2.589*** 
    (2.87) (2.19)     (4.95) (3.51)     (6.82) (4.34) 

𝐴𝑑𝑗. 𝑅ଶ 45.47 45.44 45.54 45.67 45.65  37.44 37.62 37.82 38.20 38.18  24.10 24.71 25.29 25.87 26.04 
∆ 𝐴𝑑𝑗. 𝑅ଶ  -0.03 0.07 0.21 0.18   0.18 0.38 0.76 0.74   0.60 1.19 1.76 1.93 
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Table 8 —Continued 

Panel B: Log-Linear Specification  

Horizon Daily  Weekly  Monthly 
 (1) (2) (3) (4) (5)  (6) (7) (8) (9) (10)  (11) (12) (13) (14) (15) 

𝛼 0.036 0.032 0.053* 0.077*** 0.070**  0.304*** 0.300*** 0.329*** 0.362*** 0.352***  0.562*** 0.584*** 0.623*** 0.657*** 0.663*** 
 (1.35) (1.17) (1.88) (2.72) (2.41)  (13.14) (12.44) (13.36) (14.61) (13.96)  (24.62) (24.57) (25.96) (27.37) (27.09) 

𝛽ௗ 0.431*** 0.430*** 0.430*** 0.424*** 0.422***  0.231*** 0.231*** 0.230*** 0.221*** 0.219***  0.144*** 0.146*** 0.140*** 0.128*** 0.128*** 
 (17.60) (17.58) (17.57) (17.33) (17.22  (10.78) (10.75) (10.73) (10.39) (10.26)  (6.79) (6.91) (6.72) (6.18) (6.21) 

𝛽௪ 0.367*** 0.367*** 0.379*** 0.377*** 0.379***  0.325*** 0.325*** 0.342*** 0.338*** 0.341***  0.173*** 0.173*** 0.216*** 0.195*** 0.205*** 
 (9.54) (9.54) (9.70) (9.80) (9.66)  (9.63) (9.63) (10.01) (10.10) (10.00)  (5.19) (5.19) (6.46) (5.99) (6.20) 

𝛽௠ 0.106*** 0.108*** 0.084** 0.077** 0.083**  0.168*** 0.171*** 0.137*** 0.128*** 0.135***  0.214*** 0.196*** 0.136*** 0.148*** 0.133*** 
 (2.93) (2.96) (2.19) (2.09) (2.17)  (5.32) (5.33) (4.09) (4.00) (4.08)  (6.86) (6.21) (4.18) (4.78) (4.14) 

𝛿ௗ  -0.167   -0.634   -0.196   -0.856**   1.138***   -0.058 
  (-0.41)   (-1.37)   (-0.55)   (-2.12)   (3.23)   (-0.15) 

𝛿௪   0.887*  0.059    1.273***  0.135    3.146***  0.974* 
   (1.77)  (0.09)    (2.90)  (0.23)    (7.35)  (1.73) 

𝛿௠    1.839*** 2.000***     2.547*** 2.733***     4.189*** 3.677*** 
    (3.87) (3.45)     (6.15) (5.42)     (10.43) (7.52) 

𝐴𝑑𝑗. 𝑅ଶ 55.13 55.11 55.18 55.45 55.46  47.52 47.50 47.72 48.51 48.59  31.21 31.54 33.06 34.87 34.92 
∆ 𝐴𝑑𝑗. 𝑅ଶ  -0.02 0.05 0.33 0.33   -0.02 0.20 0.99 1.07   0.34 1.86 3.67 3.71 
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Table 9. Out-of-Sample Forecasting with Perpetual Market Volatility 

This table reports out-of-sample forecasting performance for Bitcoin spot volatility using perpetual market volatility as explanatory variables. Panel A 
presents results from linear forecasting regressions, and Panel B reports results from log-linear regressions. Forecasting models include a benchmark HAR 
model, three HAR extensions that incorporate perpetual market volatility at each horizon (daily, weekly, and monthly), and a Kitchen Sink model including 
all three. All models are estimated recursively with an initial window of 180 days. The table reports average forecast losses (MSE, MAPE, and QLIKE), GW 
test statistics comparing each model to the HAR benchmark, and CW test statistics for Granger causality from perpetual to spot market volatility. ***, **, and 
* denote statistical significance at the 1%, 5%, and 10% levels, respectively. 
 

Panel A: Linear Specification 
Horizon Daily  Weekly  Monthly 
Model HAR 𝑅𝑉௧,ௗ

௣௘௥௣ 𝑅𝑉௧,௪
௣௘௥௣ 𝑅𝑉௧,௠

௣௘௥௣ Sink  HAR 𝑅𝑉௧,ௗ
௣௘௥௣ 𝑅𝑉௧,௪

௣௘௥௣ 𝑅𝑉௧,௠
௣௘௥௣ Sink  HAR 𝑅𝑉௧,ௗ

௣௘௥௣ 𝑅𝑉௧,௪
௣௘௥௣ 𝑅𝑉௧,௠

௣௘௥௣ Sink 
Average Loss 

MSE 0.585 0.592 0.582 0.574 0.582  0.429 0.426 0.421 0.413 0.413  0.430 0.425 0.417 0.406 0.410 
MAPE 0.877 0.883 0.870 0.857 0.868  0.709 0.704 0.700 0.691 0.690  0.772 0.765 0.757 0.731 0.740 
QLIKE -5.673 -5.669 -5.682 -5.696 -5.684  -5.598 -5.603 -5.605 -5.613 -5.614  -5.353 -5.361 -5.363 -5.386 -5.384 

GW tests on Loss Differences Relative to the Benchmark HAR model 
MSE  -3.05*** 1.41 2.82*** 0.68   2.09** 2.22** 4.93*** 4.43***   2.36** 3.79*** 5.22*** 3.65*** 

MAPE  -2.72*** 2.66*** 3.49*** 1.52   2.16** 1.86* 3.87*** 3.62***   2.06** 2.98*** 6.49*** 4.32*** 
QLIKE  -1.82* 3.69*** 4.05*** 1.85*   2.49** 1.56 3.08*** 3.04***   2.09** 1.92* 5.21*** 4.14*** 

CW test  4.58*** 7.00*** 11.66*** 7.73***   1.41* 4.19*** 10.72*** 5.05***   1.93** 5.89*** 14.95*** 6.27*** 
 
Panel B: Log-Linear Specification 
Horizon Daily  Weekly  Monthly 
Model HAR 𝑅𝑉௧,ௗ

௣௘௥௣ 𝑅𝑉௧,௪
௣௘௥௣ 𝑅𝑉௧,௠

௣௘௥௣ Sink  HAR 𝑅𝑉௧,ௗ
௣௘௥௣ 𝑅𝑉௧,௪

௣௘௥௣ 𝑅𝑉௧,௠
௣௘௥௣ Sink  HAR 𝑅𝑉௧,ௗ

௣௘௥௣ 𝑅𝑉௧,௪
௣௘௥௣ 𝑅𝑉௧,௠

௣௘௥௣ Sink 
Average Loss 

MSE 0.523 0.524 0.524 0.520 0.522  0.366 0.367 0.364 0.358 0.358  0.342 0.340 0.331 0.323 0.327 
MAPE 0.670 0.672 0.669 0.658 0.662  0.520 0.522 0.516 0.502 0.505  0.605 0.600 0.588 0.568 0.575 
QLIKE -5.969 -5.965 -5.972 -5.989 -5.982  -5.856 -5.852 -5.863 -5.880 -5.875  -5.602 -5.611 -5.625 -5.648 -5.648 

GW tests on Loss Differences Relative to the Benchmark HAR model 
MSE  -1.51 -0.79 0.90 0.25   -0.98 0.71 2.46** 2.26**   1.08 3.61*** 4.19*** 3.26*** 

MAPE  -1.91* 0.84 3.29*** 2.07***   -2.22** 1.79* 4.65*** 3.61***   2.94*** 3.92*** 5.72*** 4.52*** 
QLIKE  -3.14*** 1.86* 5.29*** 3.07***   -4.09*** 3.02*** 5.98*** 4.37***   5.43*** 4.98*** 6.82*** 6.80*** 

CW test  2.33*** 3.14*** 6.27*** 7.23***   4.29*** 3.56*** 6.88*** 7.04***   5.44*** 5.50*** 8.95*** 9.76*** 
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Table 10. Out-of-Sample Forecasting with Perpetual Market Volatility: High vs. Low Perpetual Trading Volume  

This table evaluates the out-of-sample forecasting performance of models using perpetual market volatility during periods of high and low perpetual trading 
volume. The analysis follows the linear specification in Panel A of Table 9. The sample is split into high- and low-volume subsamples based on the median 
of the 30-day relative trading volume ratio between perpetual and spot markets. Forecasting models include the HAR benchmark, three HAR extensions 
incorporating perpetual volatility at daily, weekly, and monthly horizons, and a Kitchen Sink model including all three. All models are estimated recursively 
with an initial window of 180 days. The table reports average forecast losses (MSE, MAPE, and QLIKE), GW test statistics comparing each model to the 
HAR benchmark, and CW test statistics for Granger causality. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. 
 

Horizon Daily  Weekly  Monthly 

Model HAR 𝑅𝑉௧,ௗ
௣௘௥௣ 𝑅𝑉௧,௪

௣௘௥௣ 𝑅𝑉௧,௠
௣௘௥௣ Sink  HAR 𝑅𝑉௧,ௗ

௣௘௥௣ 𝑅𝑉௧,௪
௣௘௥௣ 𝑅𝑉௧,௠

௣௘௥௣ Sink  HAR 𝑅𝑉௧,ௗ
௣௘௥௣ 𝑅𝑉௧,௪

௣௘௥௣ 𝑅𝑉௧,௠
௣௘௥௣ Sink 

High-Volume Periods 
Average Loss 

MSE 0.660 0.664 0.655 0.645 0.649  0.385 0.382 0.378 0.364 0.364  0.383 0.377 0.366 0.341 0.345 
MAPE 0.989 0.994 0.978 0.958 0.965  0.684 0.678 0.666 0.652 0.650  0.762 0.751 0.734 0.701 0.706 
QLIKE -5.784 -5.779 -5.796 -5.821 -5.812  -5.801 -5.809 -5.824 -5.840 -5.839  -5.540 -5.553 -5.569 -5.595 -5.593 

GW tests on Loss Differences Relative to the Benchmark HAR model 
MSE  -2.44**  1.80*  2.16** 1.69*   1.54  1.19  3.86***  3.50***    1.69* 2.84*** 6.08*** 5.30*** 

MAPE  -2.27**  2.49**  2.91***  2.28**   1.74*  2.22**  4.13***  3.95***    1.84* 3.05*** 6.14*** 5.36*** 
QLIKE  -2.29**  2.70*** 3.44***  2.65***    2.11**  2.74***  4.72***  4.33***    2.10** 3.12*** 5.48*** 4.98*** 

CW test  4.39*** 6.03*** 9.20*** 6.72***   1.71** 3.69*** 8.89*** 5.42***   1.62* 4.68*** 12.81*** 5.17*** 
Low-Volume Periods 

Average Loss 
MSE 0.509 0.520 0.510 0.504 0.515  0.472 0.470 0.464 0.461 0.461  0.477 0.473 0.468 0.471 0.476 

MAPE 0.765 0.772 0.763 0.757 0.771  0.733 0.731 0.734 0.730 0.730  0.781 0.778 0.779 0.760 0.773 
QLIKE -5.563 -5.559 -5.569 -5.572 -5.557  -5.395 -5.398 -5.387 -5.386 -5.389  -5.166 -5.168 -5.157 -5.178 -5.175 

GW tests on Loss Differences Relative to the Benchmark HAR model 
MSE  -2.41**  -0.30  2.33**  -1.19    1.54  2.39**  3.11***  2.72***    1.74* 2.61*** 1.05 0.15 

MAPE  -1.86*  0.97  2.43**  -1.12    1.44  -0.34  0.53  0.44    0.93 0.52 2.72 *** 0.75 
QLIKE  -0.86  2.81*** 2.64***  -1.07    1.44  -2.09**  -2.17**  -1.25    0.53 -2.03** 1.50 0.86 

CW test  1.58* 3.91*** 7.38*** 5.79***   1.12 3.49*** 7.45*** 4.36***   1.45*** 3.83*** 8.01*** 4.47*** 
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Table 11. Out-of-Sample Forecasting with Perpetual Market Volatility: Realized Kernel as Volatility Proxy 

This table replicates the out-of-sample forecasting analysis from Table 9 using realized kernel as the target volatility measure instead of realized volatility. 
The forecasting models are identical to those in Panel A of Table 9: a benchmark HAR model, three HAR extensions incorporating perpetual market volatility 
at daily, weekly, or monthly horizons, and a Kitchen Sink model including all three, estimated in linear specifications. All models are estimated recursively 
with an initial window of 180 days. The table reports average forecast losses (MSE, MAPE, and QLIKE), GW test statistics relative to the HAR benchmark, 
and CW test statistics for Granger causality. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. 
 

Horizon Daily  Weekly  Monthly 

Model HAR 𝑅𝑉௧,ௗ
௣௘௥௣ 𝑅𝑉௧,௪

௣௘௥௣ 𝑅𝑉௧,௠
௣௘௥௣ Sink  HAR 𝑅𝑉௧,ௗ

௣௘௥௣ 𝑅𝑉௧,௪
௣௘௥௣ 𝑅𝑉௧,௠

௣௘௥௣ Sink  HAR 𝑅𝑉௧,ௗ
௣௘௥௣ 𝑅𝑉௧,௪

௣௘௥௣ 𝑅𝑉௧,௠
௣௘௥௣ Sink 

High-Volume Periods 
Average Loss 

MSE 0.860 0.854 0.848 0.837 0.843  0.375 0.370 0.368 0.358 0.358  0.387 0.380 0.373 0.356 0.356 
MAPE 1.313 1.282 1.280 1.252 1.251  0.688 0.679 0.676 0.657 0.656  0.768 0.756 0.746 0.722 0.722 
QLIKE -5.638 -5.675 -5.674 -5.704 -5.708  -5.882 -5.895 -5.899 -5.922 -5.923  -5.628 -5.644 -5.655 -5.680 -5.680 

GW tests on Loss Differences Relative to the Benchmark HAR model 
MSE  1.47 4.02*** 4.08*** 2.65***   2.73*** 3.44*** 3.82*** 3.68***   4.32*** 4.45*** 6.51*** 6.36*** 

MAPE  5.27*** 6.18*** 5.62*** 5.63***   4.00*** 4.92*** 5.09*** 5.04***   4.50*** 4.60*** 6.36*** 6.25*** 
QLIKE  6.32*** 6.66*** 6.02*** 6.42***   6.00*** 6.93*** 6.68*** 6.56***   6.06*** 5.59*** 7.19*** 7.15*** 

CW test  10.64***  14.43*** 14.24*** 11.56***   10.66*** 14.08*** 13.50*** 13.39***   10.40*** 13.88*** 14.79*** 14.46*** 

Low-Volume Periods 
Average Loss 

MSE 0.695 0.692 0.689 0.684 0.691  0.478 0.477 0.478 0.457 0.465  0.444 0.443 0.437 0.410 0.425 
MAPE 1.027 1.012 1.015 1.011 1.014  0.736 0.733 0.742 0.730 0.742  0.737 0.739 0.751 0.727 0.751 
QLIKE -5.483 -5.503 -5.491 -5.487 -5.492  -5.489 -5.491 -5.472 -5.470 -5.461  -5.300 -5.296 -5.272 -5.265 -5.247 

GW tests on Loss Differences Relative to the Benchmark HAR model 
MSE  0.40 1.36 1.91* 0.51   0.25 -0.04 3.52*** 2.12**   0.38 1.15 6.29*** 2.94*** 

MAPE  1.61 1.98** 1.84* 1.09   0.77 -1.45 0.71 -0.72   -0.67 -2.12** 1.50 -1.68* 
QLIKE  2.10 1.30 0.52 0.75   0.49 -3.66*** -2.47*** -3.46***   -0.99 -3.84*** -4.80*** -6.10*** 

CW test  6.11*** 8.49*** 12.18*** 7.73***   6.16*** 6.80*** 11.41*** 10.41***   5.88*** 7.28*** 11.26*** 9.72*** 
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Table 12. Out-of-Sample Forecasting with Perpetual Market Volatility: Robustness to 

Estimation Methods 

This table assesses the robustness of out-of-sample forecast performance to alternative estimation 
methods, using perpetual market volatilities as predictive variables. Only the benchmark HAR model 
and the Kitchen Sink model (which includes perpetual volatilities at all horizons) are considered in 
linear specifications. Panel A reports results based on recursive estimation with an initial sample of 365 
days, while Panel B uses rolling estimation with a fixed window of 180 days. For each forecast horizon, 
the table presents average forecast losses (MSE, MAPE, and QLIKE), along with GW test statistics 
comparing each model against the HAR benchmark, and CW test statistics for Granger causality. The 
analysis is conducted for the full sample, and separately for high and low perpetual trading volume 
periods. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. 
 
Panel A: Recursive estimation with an initial sample of 365 days 

Horizon Daily  Weekly  Monthly 
 HAR Sink  HAR Sink  HAR Sink 

High-Volume Periods  
Average Loss 

MSE   0.682 0.667  0.402 0.383  0.404 0.367 
MAPE 1.020 0.989  0.706 0.675  0.795 0.742 
QLIKE -5.782 -5.817  -5.806 -5.841  -5.535 -5.583 

GW tests on Loss Differences Relative to the Benchmark HAR model 
MSE    1.97**   2.90***   4.54*** 

MAPE  2.62***   3.26***   4.53*** 
QLIKE  2.97***   3.57***   4.15*** 

CW test  6.72***   5.03***   4.15*** 
Low-Volume Periods  

Average Loss         

MSE 0.522 0.516  0.452 0.443  0.408 0.399 
MAPE 0.795 0.787  0.713 0.706  0.717 0.711 
QLIKE -5.571 -5.580  -5.436 -5.442  -5.244 -5.251 

GW tests on Loss Differences Relative to the Benchmark HAR model 
MSE  2.33**   2.42**   2.10** 

MAPE  2.29**   1.32   1.06 
QLIKE  2.65***   1.30   1.31 

CW test  6.94***   3.28***   3.06*** 
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Table 12 —Continued 

Panel B: Rolling estimation with an estimation window of 180 days 

Horizon Daily  Weekly  Monthly 
 HAR Sink  HAR Sink  HAR Sink 

High-Volume Periods  
Average Loss 

MSE 0.491 0.491  0.419 0.409  0.423 0.339 
MAPE 0.713 0.694  0.624 0.581  0.563 0.527 
QLIKE -5.640 -5.677  -5.547 -5.637  -5.482 -5.592 

GW tests on Loss Differences Relative to the Benchmark HAR model 
MSE  -0.04   1.27   2.24** 

MAPE  3.71**   4.67***   2.75*** 
QLIKE  7.47**   8.94***   7.85*** 

CW test  5.01**   7.14***   6.50*** 
Low-Volume Periods  

Average Loss         

MSE 0.630 0.660  0.315 0.342  0.222 0.218 
MAPE 0.866 0.851  0.501 0.551  0.469 0.487 
QLIKE -5.968 -5.996  -6.074 -6.034  -6.000 -5.963 

GW tests on Loss Differences Relative to the Benchmark HAR model 
MSE  -1.39   -1.73*   0.21 

MAPE  0.95   -1.63   -0.40 
QLIKE  1.62   -1.26   -0.78 

CW test  4.08**   2.34**   2.88*** 
 

 


