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Abstract

This study examines whether information from Bitcoin perpetual futures improves
the forecasting of Bitcoin spot volatility. Using high-frequency intraday data, we
construct two types of predictors from perpetual futures: funding-rate-based
measures and realized volatility measures. These predictors are incorporated into a
Heterogeneous Autoregressive model to forecast daily, weekly, and monthly spot
volatility. Both in-sample and out-of-sample results show significant improvements
in volatility forecasts, particularly from funding rates and at longer forecast horizons.
Forecast gains are concentrated in periods of high perpetual futures trading volume.
These findings underscore the informational value of perpetual futures for volatility

forecasting.
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1. Introduction

Volatility forecasting is central to financial decision-making and economic policy, as
accurate predictions support effective risk management, portfolio optimization, and derivatives
pricing, and enable regulators to monitor systemic risk and maintain financial stability (Poon
and Granger, 2003). This role is especially critical in the Bitcoin market, where volatility often
exceeds 80% on an annualized basis—substantially higher than that of major traditional asset
classes such as equities (typically 15-20%) or government bonds (below 10%). Such elevated
volatility underscores the need for robust risk management to protect investments. Moreover,
as the Bitcoin options market remains in its early stages yet is expanding rapidly, accurate
volatility forecasts are essential for fair pricing and efficient market functioning. Given
Bitcoin’s growing integration into the broader financial ecosystem,? monitoring its volatility is

also crucial for safeguarding financial stability.

This study investigates whether information extracted from the Bitcoin perpetual
futures market enhances the forecasting of Bitcoin spot market volatility. Perpetual futures—
futures contracts that never expire—are the most actively traded derivatives in cryptocurrency
markets. 3 Like traditional futures, perpetual futures offer leveraged exposure to price
movements without requiring ownership of the underlying asset. However, unlike traditional

futures, they allow for continuous exposure without the need for contract rollover.

We focus on the Bitcoin perpetual futures market for three main reasons. First, because

perpetual futures aggregate investor expectations without requiring consensus on fundamental

2 For example, an increasing number of public companies have begun allocating Bitcoin to their
corporate treasuries as a strategic reserve asset, signaling growing institutional acceptance. See Wall
Street Journal, “Businesses Are Bingeing on Crypto, Dialing Up the Market's Risks,” April 28, 2025.

3 In QI 2025, the global crypto derivatives market recorded approximately $21 trillion in notional
trading volume, with perpetual futures accounting for more than 90% of that activity (Source:
tokeninsight.com).



value (Shiller, 1993), they are well-suited for price discovery of Bitcoin, which lacks income
and valuation anchors. Second, the absence of contract expiration and rollover costs simplifies
trading and concentrates liquidity in a single instrument, further enhancing price discovery.*
Third, by enabling leveraged exposure without direct custody, perpetual futures mitigate
custody, regulatory, and operational risks associated with Bitcoin ownership,’ making them
especially attractive to institutional and large-scale investors, who are more likely to be
informed or influential. Collectively, these features suggest that the perpetual futures market

may embed valuable information for forecasting spot market volatility.

However, early-stage markets often suffer from limited liquidity and a dominance of
uninformed trading, resulting in inefficiencies and transitory noise (Shleifer and Summers,
1990; Makarov and Schoar, 2020). He et al. (2022) document frequent violations of theoretical
pricing bounds in cryptocurrency perpetual futures, implying persistent arbitrage opportunities.
While such mispricing has diminished over time, suggesting improving efficiency, the market
may remain inefficient. Given the relative nascency of Bitcoin perpetual futures, their
usefulness for volatility forecasting remains an open empirical question. These competing
perspectives motivate our investigation into their informational value for predicting spot

volatility.

We consider two sets of predictors derived from Bitcoin perpetual futures markets. The

first is based on funding rates, an institutional feature unique to perpetual futures. Unlike

4 Alexander et al. (2020) provide empirical evidence that perpetual futures are more liquid than
traditional futures and lead spot prices.

3 Bitcoin ownership entails custody risks—including private key loss, hacking, exchange failures, and
physical threats. Recent “wrench attacks,” where individuals with large cryptocurrency holdings are
physically threatened to surrender private keys, highlight these risks (see Wall Street Journal, “Severed
Fingers and ‘Wrench Attacks’ Rattle the Crypto Elite” May 17, 2025). In addition, institutions with
fiduciary duties face regulatory and operational barriers to direct custody, while self-custody requires
security infrastructure that many are unwilling or unable to implement (Fidelity Digital Assets, 2024).



traditional fixed-maturity futures, perpetual futures prices are not guaranteed to converge to the
spot price due to the absence of a predetermined expiration date. To maintain alignment
between perpetual futures and spot prices, a funding rate mechanism is employed: long position
holders periodically pay short position holders a rate proportional to the price gap, thereby
incentivizing trades that help close it (He et al., 2022). This mechanism suggests that funding
rates serve as a powerful aggregator of market information, reflecting traders’ willingness to
pay, while also carrying implications for volatility dynamics: elevated or unstable funding rates
indicate concentrated and leveraged positions that can trigger forced rebalancing, amplify
order-flow shocks, and heighten fluctuations in the spot market.® We construct several funding-

rate-based measures to capture both the level and the intraday variation of funding rates.

The second set of predictors consists of realized volatilities computed from intraday
prices in the perpetual futures market. Unlike funding rates, which reflect traders’ positioning
incentives that drive price adjustments, realized volatility captures the ex-post market response
to these adjustments. This provides complementary information by quantifying the actual
magnitude of price fluctuation observed in the perpetual futures market. Moreover, divergences
between spot and futures volatilities can be informative. When spot volatility exceeds futures
volatility, it reflects stress or illiquidity in the spot market that is not immediately absorbed by
derivatives trading. Such frictions in risk transmission across markets suggest that futures-
based volatility measures contain predictive value for subsequent spot volatility. We construct
daily, weekly, and monthly realized volatilities of perpetual futures to capture risk dynamics

across different horizons.

We employ the Heterogenous Autoregressive (HAR) model of Corsi (2009), augmented

with perpetual-futures-based predictors, to investigate whether these additional measures

¢ Similar mechanisms have been documented in other asset markets, where leverage constraints and
order imbalances amplify volatility (e.g., Brunnermeier and Pedersen, 2009).



improve Bitcoin volatility forecasts. Both in-sample and out-of-sample analyses are conducted
across multiple forecast horizons (daily, weekly, and monthly). The results indicate that signals
from perpetual futures improve in-sample fit and, in out-of-sample tests, both Granger-cause
spot volatility and enhance forecasting accuracy. Forecasting gains are more substantial at
longer horizons, consistent with the idea that short-term volatility is obscured by temporary
market frictions, while longer horizons allow the informational content of perpetual futures to
manifest more clearly. Moreover, the gains are generally stronger for funding-rate-based
predictors than for perpetual realized volatility measures, suggesting that funding rates embed
more distinct information beyond lagged spot volatility, whereas the relatively limited
independent information in perpetual volatility reflects the structural anchoring of perpetual

futures prices to spot prices via the funding mechanism.

We further examine how the predictive value of perpetual-futures-based measures
varies with trading activity. The results show that their contribution to volatility forecasting is
primarily observed when perpetual futures trading volumes are relatively high, consistent with
the view that more active markets incorporate information more efficiently.” Our findings are
robust to a range of checks, including forecasting the level versus the log of volatility (linear
versus log-linear specifications), employing alternative empirical proxies for return volatility,

and using recursive versus rolling estimation schemes with different estimation window sizes.

This study contributes to two strands of literature. First, it extends the growing body of
research on cryptocurrency perpetual futures markets. Prior studies have examined various
aspects of these instruments, including their role in price discovery (Alexander et al., 2020),
the effects of contract design and market microstructure on intraday pricing (De Blasis and

Webb, 2022), their ability to enhance liquidity and reduce price dislocations under capital

7 See, for example, Chordia, Roll, and Subrahmanyam (2008, 2011), Roll, Schwartz, and
Subrahmanyam (2009), and Cao et al. (2024).



constraints (Gornall, Rinaldi, and Xiao, 2024), and the causal impact of their introduction or
removal on spot market quality (Ruan and Streltsov, 2024). Other research has developed
theoretical pricing models (Ackerer, Hugonnier, and Jermann, 2024), identified arbitrage
opportunities via pricing bounds (He et al., 2022), and documented substantial returns from
crypto carry trades involving shorting perpetual futures against spot holdings (Christin et al.,
2022). While the existing literature focuses primarily on price levels and directional
predictability (first moment), this paper explores a previously overlooked dimension: the
informational content of perpetual futures for future volatility (second moment). By doing so,

we provide a more comprehensive understanding of market efficiency.

Second, this study contributes to the literature on volatility forecasting, particularly in
Bitcoin markets. Prior research has examined the predictive power of option-implied volatility
(Hoang and Baur, 2020), macroeconomic and technical variables (Wang et al., 2022), sentiment
signals from news media (Sapkota, 2022), GARCH and HAR models (Bergsli et al., 2022),
and a range of statistical and machine learning methods (Dudek et al., 2024). However, the
predictive value of perpetual futures, a dominant instrument in cryptocurrency trading, remains
largely unexplored. This paper fills this gap by assessing whether signals from perpetual futures

Granger-cause spot volatility and enhance the accuracy of realized volatility forecasts.

The remainder of the paper is organized as follows. Section 2 describes the data, the
measurement of Bitcoin return volatility, the predictors used in the analysis, and the models
employed for volatility forecasting. Section 3 investigates the predictive value of funding rate-
based measures through in-sample analysis, out-of-sample forecasting, and robustness checks.
Section 4 examines whether volatility in the perpetual futures market contains predictive
information for spot volatility, following a parallel structure of in-sample, out-of-sample, and

robustness analyses. Section 5 concludes.



2. Data and Methodology

2.1. Data

We collect intraday price and volume data for both Bitcoin spot and perpetual futures
markets from Binance, one of the largest and most liquid cryptocurrency exchanges, using the
official Binance API. Specifically, we use the BTC-USDT trading pair, which is the most
actively traded perpetual futures contract on the platform, along with its corresponding spot
market series. Using BTC-USDT for both markets ensures consistency, as this pair is by far the
most liquid globally and is widely regarded as the effective spot benchmark in cryptocurrency
trading.® The data are sampled at 5-minute intervals in Coordinated Universal Time (UTC),
starting at 00:00:00 on January 1, 2020, and ending at 23:55:00 on April 30, 2025.° Prices are
based on last transaction prices, and all series are synchronized to a common 5-minute grid.
We also collect trading volumes for both spot and perpetual markets at the same frequency,

which we later use in robustness checks to account for liquidity conditions.

2.2. Measurement of Bitcoin Volatility
Following McAleer and Medeiros (2008) and Liu et al. (2015), we measure realized
volatility (RV) as the square root of the sum of squared 5-minute log returns, which serves as

a proxy for daily volatility:

N
e \/Zi1rt2_1+i/N’ (1)

8 While USDT may deviate slightly from USD, such deviations are typically small and transitory, and
have negligible impact on high-frequency realized volatility measures.

® While BTC-USDT perpetual futures on Binance were officially launched on September 9, 2019,
historical data for the contract is only available staring on January 1, 2020, which determines the
beginning of our sample period.



where N denotes the number of intraday intervals in a day, and 7;_14;/y is the log return over

the ith interval.

To address microstructure noise inherent in high-frequency data, we also compute the

realized kernel (RK) estimator, following Barndorff-Nielsen et al. (2008, 2009):

H h N
RK, = Z k(—) ) where =Z T qai/NT b1 (i . (2)
t \/ g \H+1 Yn Yh . t—1+i/NTt—1+(i—|h|)/N

We use the Parzen kernel for the weight function k(-) and set the bandwidth parameter H to

5'10

[Insert Table 1 around here]

Panel A of Table 1 reports descriptive statistics for the RV and RK measures, computed
separately for the spot and perpetual futures markets. We also report their squared values, as
some studies defines “realized volatility” in terms of realized variance.!! The distributional
characteristics of these measures are broadly similar across the two markets. Both RV and RK
exhibit substantial positive skewness and excess kurtosis, indicating departures from normality,
as confirmed by the Jarque-Bera test. To mitigate the impact of non-normality and fat tails, we
also consider logarithmic transformations of these measures. The Ljung-Box statistics indicate
significant autocorrelation, consistent with the well-documented phenomenon of volatility
clustering (Andersen et al., 2001; 2003). Figure 1 plots the time series of RV and RK for the

spot and perpetual futures markets, highlighting the persistent nature of Bitcoin volatility.

10 Results are similar when using H=10; not reported for brevity.

' See, for example, Andersen et al. (2003), Andersen, Bollerslev, and Diebold (2007), Busch et al.
(2011), and Bonato et al. (2023).



[Insert Figure 1 around here]

2.3. Funding-Rate-Based Variables
We collect historical funding rate data for perpetual futures contracts from the Binance
website.!? On Binance, funding rate payments are determined and published by the exchange
every eight hours, yielding three observations per day.'? Although this frequency is limited,'*
these realized funding rates represent the actual cost of holding long versus short positions in
the perpetual futures market and therefore convey economically meaningful signals about
positioning imbalances and market sentiment. To explore the informational content of funding
rates for volatility forecasting, we construct several explanatory variables that capture both
their level and intraday variation:
e AvgFR: The daily average of the three funding rates, capturing the overall directional
pressure from net long or short positions.
e AbsFR: The absolute value of the daily mean funding rate, reflecting the strength of
market imbalance regardless of direction.
e StdFR: The standard deviation of the three intraday funding rates, measuring variation
in funding costs throughout the day.
e TrendFR: A monotonicity indicator that equals +1 if funding rates increase across the
three intervals, —1 if they decrease, and 0 otherwise, summarizing whether intraday

funding rates follow a consistent directional pattern.

12 See Binance: https://www.binance.com/en/futures/funding-history/perpetual/funding-fee-history.

13 Funding rates on Binance are charged at 00:00, 8:00, and 16:00 Universal Time Coordinated (UTC).
Only traders holding positions at these times are subject to the funding payments, which reflect actual,

realized costs. Although Binance provides predicted funding rates in real time, historical data on these
forecasts is not publicly available, limiting their use in empirical analysis.

14 'We acknowledge that with only three observations per day, their aggregates are not statistically robust
in the conventional sense. Yet because funding rates are released at this frequency by design, our
construction should be viewed as a pragmatic way to extract economic signals from the realized
funding-rate data given the market’s data structure.
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Panel B of Table 1 presents summary statistics for these funding-rate-based variables.
Since funding rates are typically expressed in very small decimals, often below 0.001%, all
variables are multiplied by 10,000 for ease of reference. The mean of AvgFR is positive (1.254),
indicating that, on average, long position holders pay funding fees to short position holders,
reflecting persistent net demand for long positions over the sample period. This pattern aligns
with the existence of a structural premium for leveraged long exposure, as documented by
Christin et al. (2022), who attribute this premium to persistent investor demand for upside
exposure in cryptocurrencies. AbsFR has a mean of 1.406, suggesting sizable directional
imbalances in positions. StdFR averages 0.532, indicating moderate intraday variation in
funding conditions. TrendFR frequently assumes a value of zero, indicating that flat or non-
monotonic funding rate sequences are more common than strictly increasing or decreasing

intraday trends. Figure 2 plots the time series of these funding-rate-based measures.

[Insert Figure 2 around here]

2.4. Volatility Forecasting Models: HAR and Extensions

To model and forecast volatility, we employ the Heterogeneous Autoregressive (HAR)
model proposed by Corsi (2009), which is widely used in the volatility literature. Although it
is not a formal long-memory model, it effectively captures the long-memory-like behavior
commonly observed in realized volatility. We choose the HAR model for its empirical
robustness and its flexibility in incorporating additional predictors. Empirical evidence
supports this choice: Bergsli et al. (2022) find that HAR models outperform GARCH-type
models in forecasting Bitcoin volatility, while Dudek et al. (2024) show that simple linear

models such as HAR perform comparably to more complex machine learning approaches.

10



As a benchmark, we implement the standard HAR model in the following form:

RViyp = a+ BaRVig + BwRVew + BmRVim + €t41, (3)

where RV,; = RV,, RV,,, = /% ® JRVZ,, and RV, = /% 2 RVZ, represent the

lagged daily, weekly, and monthly realized volatilities from the spot market, respectively.

We then extend the model by including additional predictors in a vector X;:

RViy, =a+ ﬂdRVt,d + ﬁwRVt,w + B RVem + Y'Xe + €41 4)

where X; includes one or more of the following: funding-rate-based variables and realized
volatility measures from the perpetual futures market, either individually or in combination.
This allows us to assess the incremental predictive power of perpetual futures signals beyond
the information already embedded in the lagged spot market volatility.

To evaluate forecast performance across different horizons, we also estimate the model
using h-day aggregated volatilities as the dependent variable, defined as the square root of the

average realized variance over the next h days:

1
RViten = \/Ez]-_lRVtzﬂ" (5)

where h =1, 7, 30 correspond to daily, weekly, and monthly horizons, respectively. This

construction provides a volatility measure that is comparable across horizons by capturing the
average level of realized variance over the forecast window [t + 1,t + h], thereby enabling us
to investigate whether the predictive content of perpetual market variables differs across short-,
medium-, and long-term horizons.

While the above specifications are based on realized volatility levels, we also consider

log-transformed versions to account for the heavy-tailed nature of realized volatility and

11



mitigate the impact of extreme observations. Specifically, the log-transformed specification is

given by

In(RV,4n) = @ + BaIn(RVig) + By In(RV,, ) + B IN(RVi ) + ¥'Xe + €141, (6)

where ln(RVt,Hh) denotes the log of the realized volatility over forecast horizon h, and

ln(RVt,d), 1n(RVt‘W), and ln(RVt,m) are the logs of daily, weekly, and monthly realized

volatilities, respectively.

3. Forecasting Bitcoin Spot Volatility with Funding-Rate-Based Predictors

3.1. In-Sample Analysis

We begin by assessing whether funding-rate-based measures provide in-sample
predictive power for Bitcoin spot volatility. Table 2 presents estimation results from linear
regressions where funding rate variables are added to the benchmark HAR model, either

individually or jointly:

RVieyn = a+ BaRVig + BuRViw + BmRVem + VavgrrAVIFR: + Vapsrr ADSFR, %)
+ VstarrStAF Ry + YrrenarrTTeNdFR; + €444,

[Insert Table 2 around here]

Panel A (daily), Panel B (weekly), and Panel C (monthly) present the results across
three forecast horizons. The benchmark HAR model (column (1)) delivers strong explanatory
power at all horizons, with all lagged realized volatility terms entering positively and
significantly. As expected, the importance of short-horizon volatility declines with longer

forecast horizons: B, falls from 0.427 (t-statistic=16.90) in Panel A to 0.134 (t-statistic=6.20)

12



in Panel C. Conversely, the weight on longer-horizon volatility increases, with 3, rising from
0.087 (t-statistic=2.54) in Panel A to 0.231 (t-statistic=7.86) in Panel C.

Adding funding-rate-based predictors improves model fit. The average funding rate
(AvgFR) has consistently significant and positive coefficients across all horizons and
specifications, suggesting that greater net long positioning, reflected in higher funding rates, is
associated with increased future spot volatility, likely due to liquidation risk and position
unwinding pressures. The coefficients on the absolute average (AbsFR) are positively
significant without controls for AvgFR but become insignificant when AvgFR is included,
suggesting that its predictive power is subsumed by AvgFR. Both variables capture position
imbalances in the market; however, AvgFR not only reflects the magnitude of directional
pressure (as AbsFR does) but also its direction. This indicates that AvgFR captures a more
comprehensive measure of market positioning, rendering the incremental explanatory power
of AbsFR negligible. The standard deviation (StdFR) shows some predictive power at longer
horizons, but its significance and coefficient sign vary across specifications, indicating limited
robustness. The directional trend measure (TrendFR) is mostly insignificant, suggesting little
forecasting value.

The incremental explanatory power from funding-rate-based predictors is more
pronounced at longer forecast horizons, as indicated by adjusted R? values. In Panel C
(monthly horizon), the adjusted R? increases from 24.10% in the HAR-only model (column
(1)) to 34.11% in the full model with all predictors (column (6)). In comparison, the daily
horizon models show more modest gains, with increases of only 0.68 to 1.60 percentage points,
while the weekly horizon models exhibit larger gains of up to 4.52 percentage points. This
pattern likely reflects that shorter-term volatility is more contaminated by market
microstructure frictions and transitory liquidity effects, whereas longer horizons allow the

informational content of perpetual futures to materialize more clearly.

13



[Insert Table 3 around here]

Table 3 presents the results from a log-linear specification, where the dependent
variable is the log of realized spot volatility and the lagged realized spot volatilities also enter
in log form. The same set of funding-rate-based predictors—AvgFR, AbsFR, StdFR, and
TrendFR—are added individually and jointly to the benchmark log-HAR model. The results
are broadly consistent with those in Table 2. The coefficients on lagged realized spot volatilities
remain positive and statistically significant across all horizons, with similar patterns in
magnitude: the coefficient on lagged daily volatility (f;) decreases with the forecast horizon,
while that on lagged monthly volatility (5,,) increases. When funding-rate-based predictors are
added individually, all except TrendFR display statistically significant incremental predictive
power across horizons. In joint specifications, AvgFR and AbsFR retain their significance,
while StdFR remains significant only at the monthly horizon. Adjusted R? improvements
follow a similar pattern, with larger gains observed when either AvgFR or AbsFR is included
and when forecasts are made at longer horizons. Overall, Table 3 confirms that funding-rate-

based measures improve in-sample forecasting of Bitcoin spot volatility.

3.2. Out-of-Sample Forecasting Performance

The central question in this section is whether incorporating funding-rate-based
predictors improves the out-of-sample performance of volatility forecasts relative to the
benchmark HAR model. Following Paye (2012), we distinguish between two conceptually
distinct notions of forecast improvement. The first adopts a structural perspective, examining
the data-generating process: Do funding-rate-based variables Granger-cause spot volatility,

such that spot volatility depends not only on its own lags but also on funding-rate-based

14



variables? The second takes a normative perspective, focusing on practical forecasting
performance: Do the augmented models produce more accurate volatility forecasts than the
benchmark?

While related, these two perspectives need not lead to the same empirical conclusion
due to the classic bias-variance trade-off. Even if a funding-rate-based predictor is part of the
true model and reduces conditional bias, including it may increase forecast variance through
parameter estimation noise. As a result, a correctly specified model could underperform a
simpler, mis-specified benchmark in terms of forecast error.

To evaluate both aspects of forecast performance, we adopt a two-pronged testing
approach following Paye (2012). In Subsection 3.2.1, we test Granger causality using the Clark
and West (CW, 2007) test, which accounts for overfitting in nested models and evaluates
whether the inclusion of funding rate-based variables adds incremental information beyond
past volatility. In Subsection 3.2.2, we assess forecast accuracy using the Giacomini and White
(GW, 2006) test, which evaluates whether augmented models statistically outperform the

benchmark in terms of predictive loss.

3.2.1. Testing for Granger Causality
We first test whether funding-rate-based predictors Granger-cause spot volatility by
applying the CW test for nested models, following Paye (2012). The CW test evaluates whether
the observed reduction in mean squared prediction error (MSPE) from an augmented model is
sufficiently large to offset the penalty from estimating additional parameters. Unlike standard
forecast comparison tests, which tend to favor simpler models in nested settings, the CW test

introduces a correction term to account for this bias. Let et,0(= Vi — )7&0) and et‘1(= Ve —

37t,1) denote forecast errors from the benchmark and augmented models, respectively, where

15



¥t is the realized volatility at time ¢, and ;o and J, ; are forecasts from the benchmark and

augmented models. The CW test is based on the adjusted forecast error difference:

R N2
fe=eto—etr+ (Pro—e1) (®)
The CW test statistic is then given by:

f

~2
Of

CW =

)

3

where f is the sample mean of f;, T is the number of out-of-sample forecasts, and 6f2 is the

sample variance of f;. A significantly positive CW statistic provides evidence of Granger
causality, indicating that the funding-rate-based variable improves forecasts by offering
incremental information not already captured by lagged volatility dynamics.

The last row of Table 4 reports CW statistics comparing the benchmark HAR model—
based solely on lagged realized spot volatility—with four augmented HAR models: three that
include individual funding-rate-based predictors (AvgFR, AbsFR, and StdFR), and a Kitchen
Sink model that incorporates all three predictors. > Forecasting models are estimated
recursively, starting with an initial window of 180 days and expanding daily as new
observations become available. Panel A presents results from linear specifications. Across daily,
weekly, and monthly horizons, the CW statistics are uniformly positive and highly significant
at the 1% level. At the daily horizon, CW values range from 4.94 (StdFR) to 11.17 (AbsFR),
while the Kitchen Sink model also yields a strong and significant statistic of 8.28. At the weekly
horizon, the evidence is even stronger, with CW statistics exceeding 7.6 for all predictors and

reaching 11.14 for AbsFR. At the monthly horizon, CW values remain consistently large,

15 The directional measure (TrendFR) is excluded from the out-of-sample analysis, as it was found to
be largely insignificant in the in-sample regressions (see Table 2, Column (5)).
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ranging from 8.65 (Kitchen Sink) to 12.40 (StdFR), again confirming significance at the 1%
level. These results demonstrate that each funding-rate-based variable contributes incremental
predictive content beyond lagged realized spot volatility, and that the joint inclusion of all three
predictors continues to deliver significant gains. Panel B reports results from log-linear
specification and shows a similar pattern of statistically significant positive CW statistics across
all forecast horizons. Taken together, these findings indicate that perpetual funding-rate-based

variables Granger-cause spot volatility.

[Insert Table 4 around here]

3.2.2. Testing for Superior Predictive Ability

While the CW test results in Section 3.2.1 provide evidence that funding rate predictors
contain unique information about future volatility, they do not necessarily imply that the
augmented models with funding rate measures improve forecasting performance in a normative
sense. To evaluate whether funding-rate-based predictors improve forecast accuracy, we use
the GW test of equal predictive ability. This test assesses whether the average difference in
forecast losses between the benchmark HAR model and the augmented model is statistically
significant. The null hypothesis states that both models have equal predictive accuracy. The

GW test statistic is given by:!°

T
T: where d; = L(}’t’)’}t,o ) - L()’t: yt,l)' dr = Z de /T (10)

t=1

16 The GW test statistic is equivalent to the Diebold and Mariano (2002) test statistic.
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Here, y, is the realized volatility at time 7, J; o and y; ; are forecasts from the benchmark and
augmented models, L(+) is a loss function, and &7 is a heteroscedasticity- and autocorrelation-
consistent (HAC) estimator of the asymptotic standard deviation of VT d7.

Following Patton (2011), we consider three loss functions for evaluating volatility

forecasts:

Mean Squared Error (MSE): L(RV; ¢4, ﬁl\/t'Hh) = (RVfH_h - }WgtJrh)z, (11)

2 o2
Mean Absolute Percentage Error (MAPE): L(RVy ¢4 1, RVye1n) = W , (12)
tit+h
5772
Quasi-Likelihood (QLIKE): L(RV ¢+, RV¢ 1) = log(RVZ4s) + 522, (13)

tt+h

where RV, ;p denotes the ex-post realized volatility and }Wt,t+ n 1s the corresponding forecast.

Table 4 reports average out-of-sample forecast losses for five models: the HAR
benchmark, three HAR models augmented with individual funding-rate-based predictors
(AvgFR, AbsFR, and StdFR), and a Kitchen Sink model that includes all three predictors. The
table also presents GW test statistics comparing each augmented model to the benchmark.
Panel A presents results based on linear specifications. Across all forecast horizons, both
AvgFR and AbsFR consistently improve forecast accuracy relative to the HAR benchmark.
The GW statistics for these two predictors are uniformly positive and statistically significant
across all three loss functions, suggesting robust forecast gains from the augmented models.
For example, under the monthly forecast horizon, AvgFR yields GW statistics of 13.78 (MSE),
14.63 (MAPE), and 14.87 (QLIKE), all significant at the 1% level.

In contrast, StdFR exhibits more mixed results. While it improves predictive accuracy

at weekly and monthly horizons, it performs poorly at the daily horizon: the GW statistics for
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StdFR are significantly negative at the daily horizon. This pattern mirrors its weak in-sample
performance, where StdFR fails to achieve statistical significance and even reduces the model’s
adjusted R? relative to the HAR benchmark (see Table 2, Panel A, Column (4)). The
combination of significantly positive CW statistics and insignificant GW statistics for StdFR
indicates that, although StdFR contains unique information about spot volatility, it does not
translate into forecast accuracy improvements, likely due to large estimation noise. These
findings suggest that including funding rate dispersion may increase estimation noise when
forecasting short-term volatility, outweighing its potential informational benefits.

The Kitchen Sink model generally outperforms the HAR benchmark across all horizons,
with the larger gains observed at longer horizons. However, it fails to outperform models that
include AvgFR or AbsFR individually, often producing higher average losses and lower GW
statistics. Although its improvements over the benchmark remain statistically significant, these
patterns suggest that StdFR contributes little incremental value and that AvgFR and AbsFR are
highly correlated, making models with AvgFR or AbsFR alone more effective.

A similar pattern emerges in Panel B, which presents results from the log-linear
specifications. AvgFR and AbsFR continue to yield substantial forecast improvements across
all horizons, with significantly positive GW statistics under all loss functions. Although StdFR
performs better than in the linear case, its improvements remain modest at short horizons
relative to models with AvgFR or AbsFR. Overall, the log-linear results reinforce the
conclusion from the linear specification: funding-rate-based predictors, particularly AvgFR and
AbsFR, consistently enhance out-of-sample forecast accuracy.

In sum, the findings in Table 4 suggest that funding-rate-based variables provide
incremental predictive information beyond that captured by lagged realized volatility, and that
this information translates into consistent gains in forecast accuracy rather than spurious

improvements from added model complexity.
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3.2.3. Variation with Perpetual Trading Volume
This subsection investigates whether the predictive power of funding-rate-based
variables depends on trading activity in the perpetual futures market. Since funding rates are
generated within this market, their informativeness should be greater when trading is more
active and liquid. To test this, we replicate the out-of-sample analysis in Table 4 across periods
of high and low perpetual trading volume. We classify high versus low volume periods based

on the median of the 30-day moving average of the ratio of perpetuals to spot trading volume.”

[Insert Table 5 around here]

Table 5 presents the results separately for high- and low-volume periods. As expected,
forecast improvements from funding-rate-based predictors are more pronounced during high-
volume periods. In Panel A (linear specification), GW statistics are consistently positive and
statistically significant in the high-volume subsample across most models and forecast
horizons.!® In contrast, the low-volume subsample exhibits weaker GW statistics, with more
frequent insignificance and lower magnitudes when positive. CW statistics are significantly
positive across all models and both subsamples but are markedly larger during high-volume
periods, often nearly double, indicating stronger Granger causality when market activity is
elevated.

Panel B (log-linear specification) shows similar patterns. The augmented models with

funding-rate-based measures again perform notably better in high-volume periods, and CW

17 The 30-day average aligns with the longest volatility lag in the HAR specification. Results are robust
to alternative subsample definitions using daily volume (not tabulated).

'8 The one exception is the model using StdFR alone at the daily horizon, which yields a significantly
negative GW statistic, echoing earlier in-sample and out-of-sample results on its limited short-term
predictive power.
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statistics support greater informational value from funding rates under these circumstances.
Together, these results highlight that funding rates contribute more meaningfully to volatility

forecasting when derived from a more active perpetual futures market.

3.3. Robustness Checks

To evaluate the robustness of our forecasting results, we conduct two complementary
exercises. First, we examine the sensitivity of results to the choice of volatility proxy by using
the realized kernel instead of realized volatility. Second, we consider alternative model
estimation methods, including longer recursive windows and rolling estimations. This section
reports results from the linear specification only, given the minimal differences from log-linear
models, and focuses on subsamples split by high- and low-volume periods rather than the full

sample."’

3.3.1. Realized Kernel as Alternative Volatility Proxy

We first assess whether our findings are sensitive to the choice of volatility proxy by
replicating the out-of-sample forecasting analysis using the realized kernel (RK), as defined in
Eq. (2) and proposed by Barndorff-Nielsen et al. (2008). The RK estimator is designed to
address the limitations of realized volatility in high-frequency settings, where microstructure
noise can introduce significant bias. Although RV converges to integrated volatility under
certain idealized conditions, those assumptions are typically violated in practice. In particular,
the presence of microstructure noise, stemming from bid-ask bounce, discrete pricing, and
other market frictions, induces autocorrelations in returns, undermining the consistency of RV.
The RK estimator mitigates this bias by accounting for such noise, and is widely considered a

more robust volatility measure in high-frequency data environments.

19 Results using log-linear specifications and the full sample are available upon request.
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[Insert Table 6 around here]

Table 6 presents the out-of-sample results using RK as a volatility proxy. The overall
patterns closely resemble those reported in Table 5 based on realized volatility. Funding-rate-
based predictors, such as AvgFR and AbsFR, continue to enhance forecast accuracy relative to
the HAR benchmark, with stronger effects during high-volume periods. GW statistics for
models augmented with these predictors remain highly significantly positive in high-volume
periods but tend to weaken in low-volume periods. CW statistics are significantly positive
across all specifications, with larger magnitudes in high-volume periods. Thus, the predictive
value of funding-rate-based variables persists when RK is used as the volatility proxy,

reinforcing the robustness of our results to alternative volatility measures.

3.3.2. Robustness to Estimation Methods
We assess the robustness of our results to alternative model estimation strategies. While
the baseline forecasts are generated using recursive estimation with a 180-day initial window,
Table 7 considers two alternatives: recursive estimation with a longer 365-day initial window

(Panel A) and rolling estimation with a fixed 180-day window (Panel B).

[Insert Table 7 around here]

Panel A confirms the robustness of our main findings to a longer estimation window.
Funding-rate-based predictors, except for StdFR at the daily forecast horizon, improve forecast
accuracy relative to the HAR benchmark, with stronger forecast gains in high-volume periods.
Both GW and CW statistics remain significantly positive, with larger magnitudes in high-

volume periods, closely matching the baseline results in Table 5, Panel A.

22



Panel B shows that the forecasting gains from funding-rate-based variables are
somewhat attenuated under rolling estimation. This is likely due to its greater sensitivity to
short-term noise and reduced ability to capture longer-term dynamics. Nonetheless, a clear
contrast emerges across volume subsamples. During high-volume periods, augmented models
significantly improve forecasts (except at the daily horizon), as reflected in strongly positive
and statistically significant GW statistics. In contrast, GW statistics turn significantly negative
during low-volume periods, indicating that the simple HAR benchmark outperforms the
augmented models. CW statistics remain significantly positive in both subsamples, suggesting
that funding-rate-based variables contain unique information about spot volatility but fail to

improve forecast accuracy under low-volume conditions due to large estimation noise.

4. Forecasting Bitcoin Spot Volatility with Perpetual Futures Volatility

This section examines whether realized volatilities computed from intraday perpetual
futures prices improve forecasts of Bitcoin spot volatility. While perpetual futures prices are
structurally linked to funding rates, their predictive value for spot volatility may differ. Funding
rates function as an adjustment tool to promote convergence between perpetual and spot prices
by altering traders’ incentives and correcting imbalances in long and short positions. In contrast,
realized volatility measures based on price dynamics capture the ex-post market response to
these adjustments. By incorporating these high-frequency price-based volatility signals, we
assess whether intraday perpetual price dynamics provide incremental predictive information
about the evolution of spot volatility.

We follow the same structure as in Section 3 but replace funding-rate-based predictors
with perpetual volatility measures. Since the methodology has already been described in detail

in the previous section, we focus here on interpreting the empirical results.
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4.1. In-Sample Analysis

Table 8 reports the results from in-sample predictive regressions of Bitcoin spot
volatility, incorporating volatility differences between the spot and perpetual futures markets
as additional predictors. Rather than including perpetual market volatility levels directly, we
use their differences from corresponding spot volatilities to mitigate concerns over
multicollinearity in coefficient interpretation. Given that the HAR benchmark model already
includes lagged spot volatilities, which are highly correlated with perpetual volatility, using the
difference helps isolate the incremental predictive content of perpetual volatility. Notably, this
modeling choice has no effect on out-of-sample forecasts, as both specifications yield identical

predictions.

[Insert Table 8 around here]

Each panel of Table 8 is organized by forecast horizon: columns (1)—(5) report results
for daily forecasts, (6)—(10) for weekly forecasts, and (11)—(15) for monthly forecasts. For each
horizon, we report estimates from the HAR benchmark, models augmented with a single
volatility difference (daily, weekly, or monthly), and a Kitchen Sink model that includes all
three differences.

Panel A reports the results from the linear specification. The coefficients on the
difference between spot and perpetual volatilities are generally positive and statistically
significant, particularly when each is included individually. A positive coefficient indicates that
when spot volatility exceeds perpetual volatility, interpreted as excess realized risk in the spot
market, future spot volatility tends to remain high. This pattern is most pronounced for the
weekly and monthly differences: §,, and &§,, are consistently positive across all forecast
horizons, while &, is negative and insignificant at the daily horizon. These results suggest that

a high spot—perpetual volatility gap observed over a longer past period reflects persistent
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market stress and supply-demand imbalances, signaling prolonged future risk in the spot
market.

In the Kitchen Sink model, the monthly volatility gap remains a robust predictor even
after controlling for the others, suggesting that longer-horizon volatility gaps contain more
robust information about future risk. This is likely because long-term volatility captures
persistent market dynamics and structural risk, whereas short-term volatility is more
susceptible to transitory noise and temporary market fluctuations. Regarding model fit, all
augmented models yield higher adjusted R? values than the HAR benchmark, except for the
specification including only the daily difference (column 2). As expected, the largest gains are
observed in models with the monthly difference (columns 4, 9, and 14), supporting the view
that persistent volatility gaps between spot and perpetual markets are most informative about
continued market turbulence.

Panel B presents results from the log-linear specification and largely mirrors the
patterns in Panel A. The sign and significance of the § coefficients remain consistent, and
improvements in adjusted R? follow similar patterns. Overall, the explanatory power of
perpetual volatility measures is weaker than that of the funding-rate-based predictors in Section
3 (Table 2). This can be attributed to the structural feature of perpetual futures prices, which
are anchored to spot prices through the funding rate mechanism. As a result, perpetual volatility
contains less independent information beyond lagged spot volatility compared to funding rates.
Nevertheless, perpetual volatility provides consistent predictive signals for future spot
volatility regardless of model specifications, indicating its incremental informational value

beyond lagged spot volatility.

4.2. Out-of-Sample Forecasting Performance
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Table 9 reports the out-of-sample performance of perpetual volatility measures in
predicting Bitcoin spot volatility. Forecasting models include the HAR benchmark, models
augmented with a single perpetual volatility measure (daily, weekly, or monthly), and a Kitchen
Sink model including all three. All models are estimated recursively with an initial 180-day

window.

[Insert Table 9 around here]

Panel A presents results from the linear specification. CW test statistics are significantly
positive across all specifications, indicating robust Granger causality from perpetual to spot
volatility. Adding perpetual volatility generally improves forecast accuracy relative to the HAR

benchmark, with the largest gains observed in models including monthly volatility (RV,.").

GW statistics are significantly positive across all loss functions for these models. The main

exception is the model with daily volatility (RVJ’derp), which yields significantly negative GW

statistics at the daily forecast horizon, echoing its weak in-sample performance.

Panel B presents results from the log-linear specification, which closely mirrors the
findings in Panel A. Both GW and CW statistics are significantly positive, with larger
magnitudes for longer-term perpetual volatilities at longer forecast horizons. This indicates
greater reductions in forecast loss and stronger Granger causality from perpetuals to spot
markets. These findings suggest that longer-term perpetual volatilities convey forward-looking
information beyond what is captured by lagged spot volatility, particularly at longer horizons.
Given the similarity between linear and log-linear results, subsequent analyses focus on the

linear specification for brevity.?°

20 Results from the log-linear models are available upon request and are qualitatively similar.

26



4.2.1. Variation with Perpetual Trading Volume

Table 10 evaluates out-of-sample forecasting performance across high- and low-volume
periods, defined by the median of the 30-day relative trading volume between perpetual and
spot markets. Forecast improvements are more pronounced during high-volume periods, with
GW statistics consistently positive and significant across most models and horizons.?! In
contrast, low-volume periods show mixed GW results with weaker significance, indicating
diminished predictive power when the perpetual futures market is less active. CW statistics
remain positive and significant in both subsamples but are notably stronger during high-volume
periods. Overall, the findings confirm the enhanced informational role of perpetual volatility

when trading activity is high.

[Insert Table 10 around here]

4.3. Robustness Checks
4.3.1. Realized Kernel as Alternative Volatility Proxy

Table 11 reports out-of-sample forecasting performance using RK as the volatility proxy.
The results show stronger and more consistent forecast improvements from perpetual volatility
when RK is employed. Compared to Table 10, GW statistics are more uniformly positive and
significant during high-volume periods. Notably, even the model with daily perpetual volatility
yields significantly positive GW statistics for daily forecasts in high-volume periods,
contrasting with its negative or insignificant performance when using realized volatility. The
divergence between high- and low-volume periods is more pronounced: high-volume periods
show broadly positive and significant GW statistics across all models and horizons, whereas

low-volume periods exhibit mixed signs and weaker significance. CW statistics also display

2! The daily volatility model at the daily horizon is an exception.
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larger positive values during high-volume periods, confirming stronger Granger causality from
perpetual to spot volatility when trading activity is high. Overall, these results highlight the
benefits of using RK, suggesting that mitigating microstructure noise enhances the predictive

content of perpetual volatility.

[Insert Table 11 around here]

4.3.2. Robustness to Estimation Methods
Table 12 assesses the robustness of our findings to alternative estimation methods,
focusing on the Kitchen Sink model relative to the HAR benchmark. Panel A reports results
based on recursive estimation with a 365-day initial window. The results closely align with the
main findings in Table 10 (180-day initial window), with GW and CW statistics remaining
consistently positive and significant during high-volume periods, reaffirming the predictive

power of perpetual market volatility when trading activity is high.

[Insert Table 12 around here]

Panel B uses rolling estimation with a fixed 180-day window. Compared to recursive
estimation, rolling estimation generally yields weaker forecasting performance, reflected in
smaller and less significant GW and CW statistics, likely due to its greater sensitivity to
transitory noise. Nonetheless, the pattern of stronger forecast performance during high-volume
periods persists. Overall, while the magnitude of improvement varies by estimation methods,
these robustness checks confirm that perpetual market volatility enhances forecast accuracy

under active market conditions.

5. Conclusion

28



Given the novelty of perpetual futures and their growing role in the cryptocurrency
ecosystem, this paper investigates whether signals extracted from the Bitcoin perpetual futures
market improve forecasts of Bitcoin spot volatility. We focus on two classes of predictors:
funding-rate-based measures and realized volatility measures derived from perpetual futures

prices.

Using an extended Heterogeneous Autoregressive model, we find that both types of
predictors provide significant incremental information about future spot volatility beyond that
contained in lagged spot volatility. They improve in-sample fit and, in out-of-sample tests,
deliver robust evidence of Granger causality and enhanced forecasting accuracy, particularly
at longer horizons. The predictive value of perpetual futures signals is most pronounced when
trading volumes in the perpetual market are relatively high. These results remain robust to
alternative model specifications, different volatility proxies, and both rolling and recursive

estimation methods.

Our findings suggest that perpetual-futures-based signals are useful for forecasting
Bitcoin volatility. These signals can aid investors in risk management, improve derivatives
pricing, and assist regulators in monitoring market conditions. This study contributes to the
literature by demonstrating that perpetual futures contain information about higher-order return
moments, complementing prior research that has primarily focused on price discovery and
return predictability. In doing so, it also highlights the role of perpetual futures markets in
shaping spot market risk dynamics and enhancing market efficiency, thereby extending the

understanding of volatility transmission and price discovery in cryptocurrency markets.
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Figure 1. Time Series of RVs and RKSs for Bitcoin Spot and Perpetual Futures

This figure presents the time series of realized volatilities (RV, top row), their logarithmic
transformation (middle row), and realized kernels (RK, bottom row) for Bitcoin spot (left column) and
Bitcoin perpetual futures (right column) traded on Binance from December 31, 2019 to April 30, 2025.
All series are expressed in percentage points.
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Figure 2. Time Series of Funding-Rate-Based Measures

This figure displays the time series of three funding-rate-based measures for Bitcoin perpetual futures
contracts traded on Binance: the daily average of funding rates (4vgFR, top panel), the daily absolute
average (AbsFR, middle panel), and the daily standard deviation (StdFR, bottom panel). The sample
period spans from December 31, 2019 to April 30, 2025. All funding-rate-based measures are multiplied
by 10,000 and expressed in percentage terms.
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Table 1. Descriptive Statistics

Panel A reports summary statistics for realized volatilities (RVs), realized kernels (RKs), their squares,
and log transformation for Bitcoin spot (Panel A.1) and BTCUSDT perpetual futures (Panel A.2) traded
on Binance. RV and RK are in percentage points; their squares are in squared percentage points. The
statistics include mean, standard deviation, skewness, kurtosis, minimum, and maximum, along with p-
values from the Jarque-Bera test (normality) and the Ljung-Box test (autocorrelation, up to 10 lags,
heteroscedasticity-adjusted). Panel B presents summary statistics for daily funding-rate based measures
from the perpetual futures market, calculated from three intraday observations. AvgFR and AbsFR are
the daily average and absolute average across the three funding rates, StdFR is their daily standard
deviation, and TrendFR is a direction indicator: +1 if rates increase monotonically, -1 if they decrease,
and 0 otherwise. AvgFR, AbsFR, and TrendFR are multiplied by 10,000 and expressed in percentage
terms. The sample period spans January 1, 2020 to April 30, 2025.

Panel A: Volatility measures

Mean  Std. Dev. Skewness Kurtosis Min Max Jarque-  Ljung-
Bera Box
Panel A.1: Spot market
RV? 13.132  36.397 19.341 500.981 0.083 1,105.561  0.00 0.00
RV 3.023 1.999 4.520 44.658 0.288 33.250 0.00 0.00
Log RV 0.957 0.536 0.064 1.029 -1.245 3.504 0.00 0.00
RK? 11.851 31.532 18.119 444.300 0.098 918.346 0.00 0.00
RK 2.853 1.926 4.077 37.405 0.313 30.304 0.00 0.00
LogRK  0.882 0.575 -0.099 0.765 -1.163 3411 0.00 0.00
Panel A.2: Perpetual futures market
RV? 13.208 36.753 19.922 541.275 0.101 1,157.907  0.00 0.00
RV 3.031 2.006 4.531 45.102 0.318 34.028 0.00 0.00
Log RV 0.960 0.534 0.096 0.989 -1.145 3.527 0.00 0.00
RK? 11.912  33.085 19.194 493.587 0.100 998.246 0.00 0.00
RK 2.851 1.946 4.258 40.983 0.316 31.595 0.00 0.00
LogRK  0.880 0.577 -0.088 0.765 -1.151 3.453 0.00 0.00
Panel B: Funding-rate-based measures

Variable Mean SZCL Min P25 P50 P75 Max
AvgFR (x10,000) 1.254 2123 -11.041 0.360 0.954 1.000 18.890
AbsFR (x10,000) 1.406 2.026 0.000 0.455 0.991 1.000 18.890
StdFR (x10,000) 0.532 0.942 0.000 0.000 0.264 0.592 16.419
TrendFR -0.012 0.491 -1.000 0.000 0.000 0.000 1.000
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Table 2. In-Sample Forecasting with Funding-Rate-Based Measures: Linear Specification

The table presents results from in-sample predictive regressions for Bitcoin spot volatility using
funding-rate based variables. The following regression model is estimated:

RVirin = @+ BaRVia + BwRVew + BimRVim + YavgrrAVIFRe + VapsrrADSFRy + VstarrStAF R,
+ YrrenarrRTrendFRy + €441,

where RV, ;4 is the realized volatility over forecast horizon h, and RV 4, RV, ,,, and RV, ,, are daily,
weekly, and monthly past realized volatilities, respectively. AvgFR, AbsFR, StdFR, and TrendFR are
funding-rate-based measures that summarize the level, dispersion, and direction of intraday funding
rates, as defined in Table 1. The table reports estimated coefficients and heteroscedasticity- and
autocorrelation-robust t-statistics (in parentheses). Forecasting horizons correspond to h =1 (Panel A:
daily), h =7 (Panel B: weekly), and h =30 (Panel C: monthly). The last two rows report the
adjusted R?and its increase relative to a benchmark HAR model (i.e., the same regression with y;, = 0
for all k). ™, ™, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.

Panel A: Daily forecasting horizon (h = 1)
0 2 3) 4) ©)) (6) (7 ®)

a 0.519" 0.456™ 0.510™ 0.520"™ 0.522" 0.394"" 0405 0.462""
(6.06) (535 (598 (6.03) (6.08) (4.54) (470)  (5.38)
B 0.427"  0.410™" 0.405™ 0.426™ 0426™ 0437 0.436™ 0429
(16.90) (1638) (15.93) (16.18) (16.84) (16.78) (16.77) (16.46)
B, 0.289™* 0.302"*" 0.288™" 0.289™* 0289 0311 0.304™ 0.285™
(7.92)  (837) (7.93) (7.92) (791) (8.53)  (8.44)  (7.88)
B 0.087 0.067" 0.074™ 0.087" 0.087" 0.071" 0.072 0.078"
(2.54)  (1.98) (2.15) (2.53) (255  (2.09) (2.12)  (2.29)
Vavgrr 0.109""* 0.187"" 0.139™
(6.84) 4.50)  (7.73)
VabsFR 0.088"" -0.066 0.142""
(5.02) (-1.29) (6.38)
VsedrR 0.002 -0.122" -0.159" -0.199""
(0.04) (-229)  (-3.55) (-3.92)
Y- -0.050  -0.039
(-0.72)  (-0.57)
Adj.R? 4547 4674  46.15 4544 4545  47.06 4706  46.55
A Adj. R? 1.27 068  -003  -0.01 1.60 1.60 1.08
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Table 2 —Continued

Panel B: Weekly forecasting horizon (h = 7)

(D 2 3) 4) (6) (6) (7 ®
a 1.080"" 0.980™" 1.061™" 1.118™" 1.078™" 0.975™ 0.969™" 1.032""
(13.73)  (12.85) (13.92) (14.21) (13.69) (12.51) (12.53) (13.42)
Ba 0.273"  0.247  0.230"" 0.241™ 0.274™ 0.252"" 0.253"" 0.245™
(11.79)  (11.03) (10.12) (10.01) (11.81) (10.81) (10.85) (10.48)
Bw 0.222°"  0.243™  0.219"" 0224 0.222"" 0.239"" 0.243"" 0218
(6.62) (7.52) (6.76) (6.72) (6.63) (7.30) (7.53) (6.72)
Bm 0.174™"  0.142""  0.147"  0.163™" 0.174™" 0.144™" 0.143™" 0.150™"
(5.55) (4.69) (4.82) (5.21) (5.54) (4.73) (4.72) 4.91)
YavgFR 0.175™ 0.147""  0.181™
(12.24) (3.95) (11.24)
VAbSFR 0.177°" 0.047 0.210™"
(11.29) (1.02) (10.54)
YstdrR 0.175™ -0.061  -0.035 -0.1227"
(4.77) (-1.27)  (-0.87)  (-2.67)
YTrendFR 0.043 0.063
(0.68) (1.02)
Adj.R? 37.44 41.95 41.32 38.14 37.42 41.95 41.95 41.51
A Adj.R? 4.52 3.88 0.70 -0.02 4.51 4.51 4.07
Panel C: Monthly forecasting horizon (h = 30)
0 2 3) 4) (6) (6) (M ®)
a 1.754™"  1.629"" 1.731™" 1.822"" 1.758"™" 1.652"" 1.655™" 1.732""
(23.90) (23.65) (25.02) (25.26) (23.94) (23.50) (23.72) (24.7%)
Ba 0.134™ 0.102* 0.080""" 0.075"" 0.133" 0.089™" 0.089"" 0.079"
(6.20) (5.03) (3.89) (3.40) (6.13) (4.20) (4.22) 3.74)
Bw 0.123"" 0.150"" 0.120"" 0.127"" 0.123™" 0.152"" 0.149"" 0.120™"
(3.95) (5.13) (4.09) (4.15) (3.94) (5.15) (5.10) (4.09)
Bm 0.2317"  0.191" 0.196™" 0.210™" 0.231"" 0.188"" 0.188"" 0.196™"
(7.86) (6.94) (7.08) (7.32) (7.88) (6.84) (6.85) (7.07)
YAvgFR 0.218™ 0.226™" 0.203™
(16.95) (6.72)  (13.96)
YabsFR 0.222™* -0.032 0.219™
(15.58) (-0.78) (12.12)
VstdFR 0.318"™ 0.100""  0.082""  0.008
(9.43) (2.33) (2.27) (0.18)
YTrendFR -0.084  -0.059
(-1.42)  (-1.06)
Adj. R? 24.10 33.98 32.62 27.44 24.14 34.11 34.12 32.58
A Adj.R? 9.88 8.51 3.34 0.04 10.01 10.02 8.48

37



Table 3. In-Sample Forecasting with Funding Rates: Log-Linear Specification

The table presents results from in-sample predictive regressions for Bitcoin spot log volatility using
funding-rate based variables. The following log-linear regression model is estimated:

In(RV;¢4n) = a@ + BaIn(RViq) + Buw In(RVyy,) + B IN(RVem) + YavgrrAVIFR: + YapsrrAbSFR,
+ ¥YstarrStAFRy + YrrenarrTrendFRy + €44,

where ln(RVt’Hh) is the log of realized volatility over forecast horizon h, and ln(RVt_d), ln(RVt’W),
and ln(RVt,m) are the logs of daily, weekly, and monthly past realized volatilities, respectively. AvgFR,
AbsFR, StdFR, and TrendFR are funding-rate-based measures that summarize the level, dispersion, and
direction of intraday funding rates, as defined in Table 1. The table reports estimated coefficients and
heteroscedasticity- and autocorrelation-robust t-statistics (in parentheses). Forecasting horizons
correspond to h =1 (Panel A: daily), h =7 (Panel B: weekly), and h =30 (Panel C: monthly). The last
two rows report the adjusted R%and its increase relative to a benchmark log HAR model (i.e., the same
regression with y;, = 0 for all k). ™, ™, and * denote statistical significance at the 1%, 5%, and 10%
levels, respectively.

Panel A: Daily forecasting horizon (h = 1)
(€] 2) 3) “4) (5) (6) (N (8)

a 0.036  0.030  0.038 0.041 0035 0030 0.030 0035
(135)  (1.14) (145 (155  (1.33)  (L.11)  (L.11)  (1.33)
By 0431 0417 0.415™ 0.422™ 0431™ 0418 0418 0418
(17.60) (17.05) (16.89) (17.03) (17.60) (16.91) (16.91) (16.90)
B 0.367"" 0369 0.362™" 0.366™ 0368 0368 0.369"" 0362
(9.54)  (9.63)  (9.44)  (9.49)  (9.54)  (9.57)  (9.62)  (9.44)
Bom 0.106™  0.099"" 0.098" 0.101"* 0.106™ 0.099" 0.100"* 0.099"
(293) (277 (272 (279 (292) (276) (277  (2.76)
VavgFr 0.019" 0.017°  0.020™
(4.93) (1.73)  (4.48)
VabsiR 0.019" 0.004 0.023"
(4.52) (0.29) (4.14)
VsedrR 0.019™ -0.003  -0.001  -0.012
(2.05) (-027)  (-0.13)  (-0.97)
Y— 0.007  0.009
0.44)  (0.55)
Adj. R? 5513 55.67 5558 5520  55.11 5561 5565  55.58
A Adj. R? 0.54 0.45 008  -0.02  0.48 0.52 0.45
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Table 3 —Continued

Panel B: Weekly forecasting horizon (h = 7)

(D 2 3) 4) (6) (6) (7 ®
a 0.304™ 0.294™ 0.309™" 0.317"" 0.303"" 0.302"" 0.298"" 0.306™"
(13.14) (13.05) (13.76) (13.76) (13.10) (13.26) (13.12) (13.54)
Ba 0.2317"  0.207** 0.200"" 0.210™" 0.232"" 0.203™" 0.203"" 0.202""
(10.78)  (9.85) (9.49) 9.76)  (10.81)  (9.59) (9.59) (9.56)
Bw 0.325™" 0.327°" 0.314™° 0321 0.326™° 0.319" 0.326™ 0.314™
(9.63) (9.97) (9.58) (9.58) (9.65) (9.69) (9.92) (9.58)
Bm 0.168"" 0.157°" 0.152"" 0.156™" 0.168"" 0.153™" 0.154™" 0.154™"
(5.32) (5.09) (4.94) (4.96) (5.31) (4.98) (5.00) (4.99)
YavgFR 0.035™" 0.012  0.033"
(10.39) (1.43) (8.73)
YAbsFR 0.039™* 0.029™* 0.0427"*
(10.69) (2.76) (9.05)
VstdFR 0.0477* -0.005 0.012 -0.011
(5.68) (-0.49)  (1.36)  (-1.11)
YTrendFR 0.015 0.019
(1.05) (1.34)
Adj.R? 47.52 50.29 50.45 48.36 47.52 50.51 50.32 50.46
A Adj.R? 2.78 2.94 0.84 0.00 2.99 2.80 2.94
Panel C: Monthly forecasting horizon (h = 30)
HD O B @ & __©® O _©®
a 0.562""  0.549™" 0.569"" 0.582"" 0.563"" 0.560"" 0.557"" 0.569""
(24.62) (25.28) (26.19) (25.87) (24.63) (25.53) (25.51) (26.04)
Ba 0.144™ 0.111"™ 0.103"" 0.113"" 0.143"™ 0.102"" 0.103"" 0.103"
(6.79) (5.50) (5.09) (5.36) (6.76) (5.02) (5.06) (5.04)
Bw 0.173" 0.176" 0.159"" 0.166" 0.172""" 0.170"" 0.173"" 0.159™
(5.19) (5.56) (5.01) (5.09) (5.17) (5.35) (5.49) (5.01)
Bm 0.214™" 0.199"" 0.193"" 0.196" 0.214™" 0.193"" 0.194™" 0.193™
(6.86) (6.70) (6.50) (6.38) (6.87) (6.53) (6.53) (6.48)
YavgFR 0.047°* 0.034™*  0.042""
(14.50) (4.16) (11.72)
YAbsFR 0.0507"* 0.012 0.049™
(14.24) (1.18) (10.97)
VstdFR 0.070""* 0.019°  0.026™"  0.003
(8.81) (1.75) (3.02) (0.25)
YTrendFR -0.013  -0.007
(-0.87)  (-0.54)
Adj.R? 31.21 37.99 37.77 33.85 31.20 38.24 38.26 37.74
A Adj.R? 6.79 6.57 2.65 -0.01 7.04 7.05 6.54
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Table 4. Out-of-Sample Forecasting with Funding Rates

The table presents out-of-sample forecasting performance for Bitcoin spot volatility using funding-rate based variables. Panel A reports results from linear
forecasting regressions, and Panel B reports results from log-linear regressions. For each panel, we consider five models: a benchmark HAR model using
lagged realized volatility at daily, weekly, and monthly frequencies; three models that augment the HAR specification with a single funding-rate-based
measure (AvgFR, AbsFR, or StdFR); and a Kitchen Sink model including all three measures. Forecasting models are estimated using a recursive procedure
with an initial sample of 180 days of data. The table reports average losses based on MSE, MAPE, and QLIKE. It also presents the Giacomini-White (GW)
test statistics for equal predictive accuracy, comparing each model to the HAR benchmark. Positive and statistically significant GW values indicate superior
forecasting performance relative to the HAR model. Clark and West (CW) test statistics assess Granger causality from each funding-rate-based measure to

volatility; significance indicates rejection of the null of no causality.

Panel A: Linear Specification

Rk ok

, and " denote statistical significance at the 1%, 5%, and 10% levels, respectively.

Horizon Daily Weekly Monthly
Model HAR AvgFR AbsFR StdFR  Sink HAR AvgFR AbsFR StdFR  Sink HAR AvgFR AbsFR StdFR  Sink
Average Loss
MSE 0.585 0.561 0.572 0.601 0.579 0.429 0379 0385 0.422 0.383 0430 0363 0371 0.407 0.363
MAPE 0.877 0.825 0.847 0.894 0.844 0.709 0.625 0.634 0.695 0.631 0.772 0.671 0.677 0.733  0.673
QLIKE -5.673 -5.742 -5.714 -5.661 -5.724 -5.598 -5.688 -5.680 -5.614 -5.681 -5353 -5.461 -5456 -5396 -5.459
GW tests on Loss Differences Relative to the Benchmark HAR model
MSE 5717 507" -439™  1.00 11.58™ 11.72"" 5187 9.72™ 13.78"" 14.13™" 11.28™" 13.42™"
MAPE 9.90™  9.41™ -7.06™" 4.60"" 17.54™" 18.58™" 8.00™" 14.46™" 14.63"" 16.18"™ 13.19™" 13.93™
QLIKE 12.99"" 13.10™" -4.80"" 6.88""" 18.77°" 20.32"" 9.55™" 15.26™" 14.87"" 16.74™ 14.46™" 14.23™"
Testing for Granger causality
CW tests 9.00™" 11.177" 4.94™" 828" 10.017" 11.14™ 7.62" 9.00™" 8.90" 9.62"" 12.40™" 8.65"
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Table 4 —Continued

Panel B: Log-Linear Specification

Horizon Daily Weekly Monthly
Model HAR AvgFR AbsFR StdFR  Sink HAR AvgFR AbsFR StdFR  Sink HAR AvgFR AbsFR StdFR  Sink
Average Loss
MSE 0.523 0.517 0.517 0.522 0.518 0.366 0.343 0.342 0.359 0.343 0.342 0306 0307 0.326 0.306
MAPE 0.670 0.657 0.656 0.667  0.660 0.520 0.487 0.482 0.508 0.485 0.605 0.554 0.548 0.579 0.553
QLIKE -5.969 -5987 -5989 -5.975 -5.984 -5.856 -5.893 -5901 -5871 -5.896 -5.602 -5.654 -5.664 -5.632 -5.658
GW tests on Loss Differences Relative to the Benchmark HAR model
MSE 2717 3.02" 1.60 1.94" 7717 7775 7.58™ 6.66™ 9.96”" 10.00™" 9.76™" 8.96™"
MAPE 5717 7177 590" 4.14™ 11957 12.88™" 11.88™" 10.56"" 10.39"" 12.07"" 11.82"" 9.24™
QLIKE 7.78" 10.55™" 10.65"" 5.98" 12917 1517 14.09™" 11.89""" 9.86™" 12.21™" 13.43™" 9.21™
Testing for Granger causality
CW test 6.01"" 599" 3.88"" 498" 10.79"" 11.96™" 12.41™ 9.71™ 11.327 12.29"" 16.62"" 11.21""
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Table 5. Out-of-Sample Forecasting with Funding Rates: High vs. Low Perpetual Trading Volume

The table compares out-of-sample volatility forecasting performance of funding-rate-based models across periods of high and low perpetual trading volume.
Panel A presents results from linear regressions, while Panel B corresponds to log-linear specifications. The models follow the same structure as in Table 4,
including a benchmark HAR model, three HAR extensions using AvgFR, AbsFR, or StdFR individually, and a Kitchen Sink model combining all three.
Perpetual trading volume is measured relative to spot trading volume as the ratio of 30-day aggregated perpetual futures volume to spot market volume. The
sample is split into high- and low-volume periods based on the median value of this ratio. Forecasting models are estimated recursively with an initial window
of 180 days. The table reports average losses (MSE, MAPE, and QLIKE), GW test statistics comparing each model to the HAR benchmark, and CW test

statistics for Granger causality from funding-rate-based measures to volatility. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels.
Panel A: Linear Specification

Horizon Daily Weekly Monthly

Model HAR AvgFR AbsFR StdFR  Sink HAR AvgFR AbsFR StdFR  Sink HAR AvgFR AbsFR StdFR  Sink

High-Volume Periods

Average Loss

MSE 0.660 0.636 0.644 0.662 0.643 0.385 0.338 0.337 0372 0.341 0.383 0309 0.313 0.356 0.311
MAPE 0.989 0925 0.950 0.992 0.931 0.684 0.592 0.598 0.663 0.595 0.762 0.645 0.651 0.719 0.646
QLIKE -5.784 -5.870 -5.838 -5.779 -5.864 -5.801 -5911 -5.900 -5.826 -5.908 -5.540 -5.676 -5.664 -5.590 -5.676

GW tests on Loss Differences Relative to the Benchmark HAR model

MSE 4.89"™" 524" 338" 226" 10.73"" 12.39"" 8.83"™" 9.28™ 18.85™" 19.06™" 10.40™" 18.68™"
MAPE 9.94™ 9.06™" -4.86"" 6.88"" 18.24™" 18.07" 10.83"" 16.53™ 18.92™" 19.06™ 10.36™" 18.91"
QLIKE 14.09"" 13.11™" -7.30"" 9.46™" 22.92"" 21.76™" 12.38"" 20.67"" 21.98™ 21.11™ 11.88™" 22.41™

CW test 1438 15.77"" 837" 6.36™ 14.71"™" 16.02™" 10.80™" 12.77""" 14.74™" 15.60™" 11.43"" 11.61™

Low-Volume Periods

Average Loss

MSE 0.509 0486 0.501 0.541 0.514 0.472 0420 0433 0472 0.424 0.477 0417 0430 0458 0416
MAPE 0.765 0.724 0.744 0.796 0.758 0.733 0.658 0.669 0.727 0.666 0.781 0.698 0.704 0.747 0.700
QLIKE -5.563 -5.614 -5591 -5542 -5.584 -5.395 -5465 -5460 -5403 -5.455 -5.166 -5247 -5248 -5203 -5.242

GW tests on Loss Differences Relative to the Benchmark HAR model
MSE 3.50"" 2207 421" -0.44 7.08 6.19"  0.14 5.85 6.777" 6.39™ 6.02™ 6.66™
MAPE 4.89™" 446" -6.54™" 0.60 9.26™ 9.82™ 203" 7.16™ 6.84™ 7.677" 830" 6.39™
QLIKE 596" 599" 396" 1.75 8.49"™" 9.80™ 293" 6.26™ 6.17"" 7.63™" 8.64™ 5.62™
CW test 7.73" 858" 4957 543 8.02" 8.61™ 528" 739" 7.56"" 8.03" 9.04™ 731"
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Table 5 —Continued

Panel B: Log-Linear Specification

Horizon Daily Weekly Monthly
Model HAR AvgFR AbsFR StdFR  Sink HAR AvgFR AbsFR StdFR  Sink HAR AvgFR AbsFR StdFR  Sink
High-Volume Periods
Average Loss
MSE 0.594 0.588 0.588 0.592 0.589 0.337 0315 0310 0.327 0.312 0.284 0244 0.240 0.264 0.241
MAPE 0.754 0.736 0.737 0.749 0.737 0.510 0470 0.464 0494 0.465 0.593 0.530 0.523 0.563 0.527
QLIKE -6.117 -6.145 -6.144 -6.124 -6.144 -6.049 -6.099 -6.106 -6.068 -6.105 -5.797 -5.871 -5.875 -5831 -5.876
GW tests on Loss Differences Relative to the Benchmark HAR model
MSE LOG 2.81™ 3.09"™ 340" 242" 7.977 8.96™" 7.73"" 8.43™ 14.70™" 15.45™ 10.60"™" 14.71"
MAPE 6.83™ 6.71" 6.96™" 6.45™ 13.18™" 13.47™" 10.65" 13.33™" 14.30™" 15.36™ 10.59™" 14.40™
QLIKE 11.05" 11.27™ 10.25™" 10.46™ 17.26™" 17.31"" 12.64™" 17.53"" 17.46™" 17.59™" 12.25™" 17.69""
CW test 11.32"°11.47"" 4.87"" 10.84™ 14.17" 16.17"" 12.29™" 15.34™" 14.76™" 16.93"" 14.90™" 14.86™"
Low-Volume Periods
Average Loss
MSE 0.451 0445 0446 0451 0447 0.394 0371 0373 0391 0.373 0.399 0369 0.374 0387 0371
MAPE 0.586 0.579 0.575 0.585 0.584 0.531 0.504 0.500 0.522 0.504 0.618 0578 0.572 0.595 0.579
QLIKE -5.822 -5.829 -5.835 -5.825 -5.824 -5.664 -5.686 -5.697 -5.674 -5.688 -5.408 -5438 -5453 -5434 -5.440
GW tests on Loss Differences Relative to the Benchmark HAR model
MSE 1.47 1.56  -1.11 0.90 442" 381" 2777 332" 4.65" 3.96™ 453" 383"
MAPE 2077 373" 123 0.70 570" 631" 6.08™" 4.50" 4.56™" 545" 6.677" 3.75™
QLIKE 1.94" 459" 474™  0.65 4717 6.79™ 7.8 413" 3.10"" 498" 7.43™ 2.88"
CW test 499" 476" 275" 423" 8.08"" 8.69™" 7.03™ 747 8.93" 9.50™" 11.04™" 8.88™"
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Table 6. Out-of-Sample Forecasting with Funding Rates: Realized Kernel as Volatility Proxy

This table replicates the out-of-sample forecasting analysis in Table 5 using realized kernel as the volatility proxy instead of realized volatility. Forecasting
models include the benchmark HAR, single-variable HAR extensions using AvgFR, AbsFR, or StdFR, and a Kitchen Sink model combining all three
funding-rate-based measures. All models are estimated recursively with an initial window of 180 days. The table reports average losses (MSE, MAPE,

dokk skok *

QLIKE), Giacomini-White (GW) test statistics comparing each model to the HAR benchmark, and CW test statistics for Granger causality. =, =, and
indicate statistical significance at the 1%, 5%, and 10% levels, respectively.
Horizon Daily Weekly Monthly
Model HAR AvgFR AbsFR StdFR  Sink HAR AvgFR AbsFR StdFR  Sink HAR AvgFR AbsFR StdFR  Sink
High-Volume Periods
Average Loss
MSE 0.860 0.835 0.844 0.865 0.845 0.375 0336 0337 0365 0.340 0.387 0318 0324 0362 0.319
MAPE 1.313 1.237 1269 1322 1.245 0.688 0.609 0.616 0.670 0.613 0.768 0.660 0.669 0.729  0.662
QLIKE -5.638 -5.733 -5.694 -5.626 -5.724 -5.882 -5983 -5970 -5903 -5.978 -5.628 -5.759 -5.745 -5.676 -5.759
GW tests on Loss Differences Relative to the Benchmark HAR model
MSE 477 506" -4.23"  1.78" 9.39"™" 11.12"" 8.41™ 7.55™ 18.32"" 18.37""" 10.55™" 17.97""
MAPE 8.80"" 8.52"™" -5.51"" 538" 16.26™ 16.48™" 11.22"" 14.18™ 17.63" 17.76™" 1047 17.66™"
QLIKE 11.39"711.08™ -7.25"" 6.81" 22.3277 21,7777 13.34™ 19.42™ 22,1477 21.54™" 12.89™" 22.62™
CW test 14.457716.69"" 11.22™" 5.92™ 14.73"* 16.90™" 12.01"" 11.96™" 14.87 16.29" 1337 10.99™
Low-Volume Periods
Average Loss
MSE 0.695 0.672  0.689 0.737 0.703 0478 0434 0446 0479 0.437 0.444 0393 0.404 0427 0.393
MAPE 1.027 0.978 1.009 1.067 1.010 0.736  0.674 0.684 0.733  0.680 0.737 0.669 0.673 0.705 0.670
QLIKE -5.483 -5.542 -5.507 -5.450 -5.507 -5.489 -5.548 -5.543 -5494 -5.538 -5300 -5.365 -5369 -5335 -5.360
GW tests on Loss Differences Relative to the Benchmark HAR model
MSE 294" 126 -3.24™ -0.72 6.09"" 517" -0.69 5.19" 5617 510" 522" 548
MAPE 4.60"" 296" -5.95""  1.18 7917 818" 1.11  6.21™ 543" 6.077" 7.46™ 505
QLIKE 5.53"" 4,05 -4.53""  1.64 7.377" 851" 1.86" 5.30™ 487" 621" 810" 437
CW test 7.48"" 855" 493" 717 7.697" 818" 4.41™ 725 7417 7747 916" 7.19™
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Table 7. Out-of-Sample Forecasting with Funding Rates: Robustness to Estimation Methods

This table evaluates the robustness of the out-of-sample forecasting results in Table 5 to alternative estimation methods. Panel A reports results based on
recursive estimation with an initial window of 365 days, while Panel B uses rolling estimation with a window size of 180 days. The forecasting models are
estimated in linear specifications, and the model structure and evaluation metrics follow the same structure as in Table 5. The table reports average forecast
losses (MSE, MAPE, and QLIKE), GW test statistics comparing each model to the benchmark HAR, and CW test statistics for Granger causality from
funding-rate-based measures to volatility. *** ** and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.

Panel A: Recursive estimation with an initial sample of 365 days

Horizon Daily Weekly Monthly
Model HAR AvgFR AbsFR StdFR  Sink HAR AvgFR AbsFR StdFR  Sink HAR AvgFR AbsFR StdFR  Sink
High-Volume Periods
Average Loss
MSE 0.682 0.657 0.665 0.684 0.663 0.402 0353 0352 0390 0.356 0.404 0324 0329 0376 0325
MAPE 1.020 0.953 0980 1.023 0.956 0.706  0.609 0.617 0.686 0.612 0.795 0.667 0.675 0.751  0.669
QLIKE -5.782 -5.873 -5.839 -5.778 -5.871 -5.806 -5.923 -5910 -5.830 -5.921 -5.535 -5.680 -5.665 -5.584 -5.680
GW tests on Loss Differences Relative to the Benchmark HAR model
MSE 475" 5.09™ -3.16™" 225" 10.24™" 11.88™" 7.54™" 8.83™ 19.03"** 19.03"** 9.45™" 18.78"™"
MAPE 9.59™" 8.64™" -421"" 6.88" 17.70"" 17.46™" 9.32""* 16.12"" 19.68™" 19.55"™" 9.68™" 19.69™"
QLIKE 13.76™" 12.67"" -6.46"" 9.53™" 22.82"* 21.40"" 11.15™" 20.66™" 22.56™" 21.40"" 10.99™" 23.00™"
CW test 13.55""14.82"" 8.20™" 6.14™ 13.99"" 15.21"" 10.25™" 11.98"™ 14.09™" 14.85"" 10.83™" 10.86™"
Low-Volume Periods
Average Loss
MSE 0.522 0.501 0.507 0.531 0.510 0.452 0406 0413 0443 0.407 0408 0356 0362 0.385 0.353
MAPE 0.795 0.750 0.761 0.801 0.763 0.713 0.633 0.640 0.696 0.637 0.717 0.633 0.637 0.678 0.634
QLIKE -5.571 -5.627 -5.614 -5.569 -5.611 -5.436 -5.519 -5.515 -5.456 -5.514 -5.244 -5338 -5.334 -5.286 -5.335
GW tests on Loss Differences Relative to the Benchmark HAR model
MSE 3.36™"  4.03™ 277 1.6l 6.22"" 573" 6.40"" 5.64™ 8.20"" 8.22"™ 7.70"™" 8.68"
MAPE 570" 7277 -3.45™ 339" 9.55™ 10.05™" 930" 8.46™ 9.20™" 10.08™" 9.23"" 9.14™
QLIKE 7.10™" 932" -1.04 4.14™ 9.88™" 10.82"" 11.10™ 8.63™ 9.54™ 10.41™ 9.80"™" 9.25™
CW test 6.44™" 7.82"" 322" 539" 7.54™" 8377 11.88"™ 6.96™ 6.89™" 7.21™" 845" 6.77"
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Table 7 —Continued

Panel B: Rolling estimation with a estimation window of 180 days

Horizon Daily Weekly Monthly
Model HAR AvgFR AbsFR StdFR  Sink HAR AvgFR AbsFR StdFR  Sink HAR AvgFR AbsFR StdFR  Sink
High-Volume Periods
Average Loss
MSE 0.630 0.625 0.625 0.627 0.649 0.315 0278 0.277 0303 0.292 0.222 0.190 0.192 0.213 0.191
MAPE 0.866 0.853 0.852 0.852 0.877 0.501 0449 0449 0482 0.464 0469 0421 0424 0453 0423
QLIKE -5.968 -5987 -5990 -5.989 -5.972 -6.074 -6.123 -6.120 -6.093 -6.109 -6.000 -6.030 -6.025 -6.012 -6.029
GW tests on Loss Differences Relative to the Benchmark HAR model
MSE 0.85 0.89 0.56 -1.98" 5.74™" 595" 2.89™ 2.61™ 10.20"" 9.74™ 5.63™ 8.17™
MAPE 1.68° 201" 2.69™ -0.83 8.25"" 8.45™ 4.81™ 3.35™ 12.94™" 12.66™" 7.44™ 9.30™
QLIKE 244" 3.01" 395" 0.28 749" 6.96™" 483" 317 6.33"" 537" 506" 4.63™
CW test 9.30"" 9.09™"  6.43"" 5.83" 9.47" 8.88™" 445" 935 6.86"" 6.33"" 525" 520"
Low-Volume Periods
Average Loss
MSE 0.491 0.510 0.514 0.531 0.550 0.419 0438 0434 0424 0.447 0.339 0368 0.370 0.343 0.376
MAPE 0.713 0.746  0.740 0.748  0.787 0.624 0.655 0.647 0.627 0.666 0.563 0.601 0.602 0.569 0.612
QLIKE -5.640 -5.609 -5.620 -5.616 -5.580 -5.547 -5.514 -5.522 -5.545 -5.504 -5.482 -5436 -5437 -5478 -5428
GW tests on Loss Differences Relative to the Benchmark HAR model
MSE 22,677 3187 3,157 5217 22,647 2196 -1.21 -3.16"™ -4.09"" -4.41™  -1.36 -447
MAPE 23,56 -3.327 _4.437 562" 23,147 22377 2062 -3.50™ 23,747 388" <155 4117
QLIKE 3277 22377 290" -4.48" 2336 22,53 -0.31  -3.47™ 4427 439" -1.10 -4.44™
CW test 8.22"" 7717 530™ 9.23™ 8.93"" 8.04™ 7.78"™" 8.64™ 528" 471" 6.20™" 5.28™
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Table 8. In-Sample Forecasting with Perpetual Market Volatility

The table presents results from in-sample predictive regressions for Bitcoin spot volatility using volatility differentials between the spot and perpetual futures
markets. Panel A reports results from the linear specification:

RViein = @+ BaRVeg + BuRViyw + BmRViem + 8a(RVeg — RVZ™P) + 84 (RVey — RVES™P) + 8y (RVem — RVETP) + 441

Panel B reports results from the log-linear specification:

In(RVysn) = @ + BaIn(RV,q) + Buw In(RVy) + B In(RVi ) + 84 In(RVy a /RVE™P) + 8, In(RV,y, /RVESTP) + 8 IN(RVi i /RVETTP) + €441

RV,p denotes the realized spot volatility at horizon h, while RV, 4, RV;,, RV;, and R

Vfderp, RI/'tﬁ,frp, Rthjnelrp denote past realized volatilities from the

spot and perpetual markets, respectively, at daily, weekly, and monthly frequencies. Forecast horizons correspond to h =1 (daily), h =7 (weekly), and h =30
(monthly). The table reports estimated coefficients and robust t-statistics (in parentheses). The last two rows report the adjusted R?and its increase over the

benchmark HAR model (i.e., excluding the volatility differential terms). *,

Panel A: Linear Specification

Rk ok

, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.

Horizon Daily Weekly Monthly
€)) (2) 3) 4) ) (6) (@) 8) ©) (10) an dz2 a3  d4  ds)
a 0.519™" 0.519™ 0.551™" 0.591™" 0.589™" 1.080™" 1.104™" 1.135™" 1.193*" 1.197"" 1.754™" 1.789™" 1.834™" 1.899™" 1.906"*"
(6.06) (6.01) (6.31) (6.63) (6.60) (13.73) (13.95) (14.20) (14.65) (14.68) (23.90) (24.31) (24.72) (25.13) (25.23)
Ba 0.427°" 0.427 0.425™" 0.423"" 0.419™ 0.273* 0.280"" 0.270™" 0.268™" 0.271"*" 0.134™" 0.145™ 0.130™" 0.128"" 0.132""
(16.90) (16.76) (16.83) (16.78) (16.40) (11.79) (12.03) (11.70) (11.63) (11.63) (6.21) (6.68) (6.05) (5.97) (6.13)
Bw 0.289™" 0.289™" 0.296™" 0.291"*" 0.296"" 0.222" 0.218™ 0.234™ 0.225™" 0.224™ 0.123** 0.118™ 0.141™ 0.127"*" 0.129™
(7.92) (7.91) (8.08) (7.99) (8.02) (6.62) (6.51) (6.98) (6.75) (6.66) (3.95) (3.78) (4.54) (4.12) (4.13)
Bm 0.087" 0.087™ 0.076™ 0.075™ 0.074™ 0.174™ 0.166™" 0.155™ 0.155" 0.151™" 0.231™ 0.219™ 0.202"* 0.205™" 0.197""
(2.54) (2.53) (2.18) (2.17) (2.14) (5.55) (5.27) (4.86) (4.91) (4.76) (7.86) (7.45) (6.82) (7.03) (6.71)
64 -0.004 -0.405 0.803™ 0.344 1.187" 0.522
(-0.01) (-1.04) (2.54) (0.96) (4.04) (1.58)
Oy 0.856" 0.382 1.485™" 0.199 2.167 0.614
(1.88) (0.62) (3.56) (0.35) (5.60) (1.18)
Om 1.635"" 1.542™ 2.573"" 2.265™ 3.289™" 2.589™
2.87) (2.19) (4.95) (3.51) (6.82) (4.34)
Adj.R? 4547 4544 4554 4567 45.65 3744 37.62 37.82 38.20 38.18 2410 2471 2529 2587 26.04
A Adj.R? -0.03 0.07 0.21 0.18 0.18 0.38 0.76 0.74 0.60 1.19 1.76 1.93
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Table 8 —Continued

Panel B: Log-Linear Specification

Horizon Daily Weekly Monthly
(€)) 2) (€)) “) 6) (6) () ) ©® 49 ap a2 d3 a4  dj
a 0.036  0.032 0.053" 0.077"" 0.070™" 0.304™ 0.300™" 0.329""" 0.362"** 0.352"*" 0.562"" 0.584™" 0.623"" 0.657""" 0.663™""
(1.35) (1.17) (1.88) (2.72) (241) (13.14) (12.44) (13.36) (14.61) (13.96) (24.62) (24.57) (25.96) (27.37) (27.09)
Ba 0.4317 0.430"" 0.430™"" 0.424™" 0.422™"" 0.231" 0.2317" 0.230"" 0.2217** 0.219™" 0.144™ 0.146™ 0.140™™" 0.128™" 0.128™"
(17.60) (17.58) (17.57) (17.33) (17.22 (10.78) (10.75) (10.73) (10.39) (10.26) (6.79) (6.91) (6.72) (6.18) (6.21)
Bw 0.367"" 0.367°"" 0.379"*" 0.377°*" 0.379™" 0.325™" 0.325™" 0.342""" 0.338"*" 0.3417"" 0.173"* 0.173"* 0.216™ 0.195™" 0.205™"
(9.54) (9.54) (9.70) (9.80) (9.66) (9.63) (9.63) (10.01) (10.10) (10.00) (5.19) (5.19) (6.46) (5.99) (6.20)
Bm 0.106™ 0.108™" 0.084™ 0.077"" 0.083"™" 0.168™ 0.171"" 0.137""* 0.128™** 0.135™*" 0.214™ 0.196™ 0.136™" 0.148™" 0.133™""
(2.93) (2.96) (2.19) (2.09) (2.17) (5.32) (5.33) (4.09) (4.00) (4.08) (6.86) (6.21) (4.18) (4.78) (4.14)
b4 -0.167 -0.634 -0.196 -0.856™ 1.138" -0.058
(-0.41) (-1.37) (-0.55) (-2.12) (3.23) (-0.15)
Sw 0.887" 0.059 1.273" 0.135 3.146™ 0.974"
(1.77) (0.09) (2.90) (0.23) (7.35) (1.73)
Om 1.839"" 2.000"*" 2.547"" 2.733" 4.189"" 3.677°
(3.87) (3.45) (6.15) (5.42) (10.43) (7.52)
Adj. R? 55.13 5511 55.18 5545 55.46 4752 4750 47772 48.51 48.59 31.21  31.54 33.06 34.87 3492
A Adj.R? -0.02  0.05 0.33 0.33 -0.02  0.20 0.99 1.07 0.34 1.86 3.67 3.71
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Table 9. Out-of-Sample Forecasting with Perpetual Market Volatility

This table reports out-of-sample forecasting performance for Bitcoin spot volatility using perpetual market volatility as explanatory variables. Panel A
presents results from linear forecasting regressions, and Panel B reports results from log-linear regressions. Forecasting models include a benchmark HAR
model, three HAR extensions that incorporate perpetual market volatility at each horizon (daily, weekly, and monthly), and a Kitchen Sink model including
all three. All models are estimated recursively with an initial window of 180 days. The table reports average forecast losses (MSE, MAPE, and QLIKE), GW

Rk ok

test statistics comparing each model to the HAR benchmark, and CW test statistics for Granger causality from perpetual to spot market volatility. =, ~, and
* denote statistical significance at the 1%, 5%, and 10% levels, respectively.
Panel A: Linear Specification
Horizon Daily Weekly Monthly
Model HAR RVE'P RVESP RUEP Sink HAR RVE'P RVESP RUEP  Sink HAR RVE™® RVES™P RUEP Sink
Average Loss
MSE 0.585 0.592 0.582 0.574 0.582 0429 0426 0421 0413 0413 0.430 0425 0417 0406 0.410
MAPE 0.877 0.883 0.870 0.857 0.868 0.709 0.704 0.700 0.691 0.690 0.772  0.765 0.757 0.731  0.740
QLIKE -5.673 -5.669 -5.682 -5.696 -5.684 -5.598 -5.603 -5.605 -5.613 -5.614 -5.353 -5.361 -5.363 -5.386 -5.384
GW tests on Loss Differences Relative to the Benchmark HAR model
MSE -3.057 141 2.82"  0.68 2.09% 2227 493" 443" 236" 3.79" 522" 3.65™
MAPE 2727 26677 3.4977 1.52 216" 1.86" 3.877" 3.627 2.06" 298" 6.49™ 432
QLIKE -1.82°  3.69™° 4.05"  1.85° 249"  1.56  3.08" 3.04™ 2097 1.92° 521" 4.14™
CW test 4.58™  7.00™" 11.66™" 7.73"" 1.41° 419" 10.72™ 5.05™ 1.93" 5.89"" 14.95™ 627
Panel B: Log-Linear Specification
Horizon Daily Weekly Monthly
Model HAR RVEP RVESP RUEP  Sink HAR RVE™P RVESP RUP'P  Sink HAR RV RVEZP RUPP Sink
Average Loss
MSE 0.523 0.524 0.524 0.520 0.522 0366 0367 0.364 0358 0.358 0.342 0340 0331 0.323  0.327
MAPE 0.670 0.672 0.669 0.658  0.662 0.520 0.522 0.516 0.502  0.505 0.605 0.600 0.588 0.568 0.575
QLIKE -5.969 -5.965 -5.972 -5989 -5.982 -5.856 -5.852 -5.863 -5.880 -5.875 -5.602  -5.611 -5.625 -5.648 -5.648
GW tests on Loss Differences Relative to the Benchmark HAR model
MSE -1.51 -0.79 0.90 0.25 -0.98  0.71 246" 226" 1.08 3.61"" 419" 3.26™
MAPE -1.91° 0.84 3.29" 2,07 222" 1797 4.657 3.617 2,94 392%™ 572" 4.52™
QLIKE -3.14™ 1.86° 529" 3.07 -4.09™" 3.02"" 598" 437 543" 498 6.82"" 6.80""
CW test 233" 3,147 6277 7.23™ 429" 356" 6.88"" 7.04™ 544" 550" 8957 9.76™
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Table 10. Out-of-Sample Forecasting with Perpetual Market Volatility: High vs. Low Perpetual Trading Volume

This table evaluates the out-of-sample forecasting performance of models using perpetual market volatility during periods of high and low perpetual trading
volume. The analysis follows the linear specification in Panel A of Table 9. The sample is split into high- and low-volume subsamples based on the median
of the 30-day relative trading volume ratio between perpetual and spot markets. Forecasting models include the HAR benchmark, three HAR extensions
incorporating perpetual volatility at daily, weekly, and monthly horizons, and a Kitchen Sink model including all three. All models are estimated recursively
with an initial window of 180 days. The table reports average forecast losses (MSE, MAPE, and QLIKE), GW test statistics comparing each model to the
HAR benchmark, and CW test statistics for Granger causality. ***, ** and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Horizon Daily Weekly Monthly
Model HAR RVEP RVESP RUPSP  Sink HAR RVE'P RVESP RUPS™P  Sink HAR RV RVEZP RUPP  Sink
High-Volume Periods
Average Loss
MSE 0.660 0.664 0.655 0.645 0.649 0.385 0382 0.378 0.364 0.364 0.383 0377 0366 0.341 0.345
MAPE 0.989 0.994 0978 0.958  0.965 0.684 0.678 0.666 0.652 0.650 0.762 0.751 0.734 0.701 0.706
QLIKE -5.784 -5.779 -5.796 -5.821 -5.812 -5.801 -5.809 -5.824 -5.840 -5.839 -5.540 -5.553 -5.569 -5.595 -5.593
GW tests on Loss Differences Relative to the Benchmark HAR model
MSE 22447 180" 2.16™  1.69" 1.54 1.19 386" 3.50"™ 1.69° 2.84™ 6.08™ 530"
MAPE 2277 2497 2917 228" 1.74° 222" 413" 3.95™ 1.84" 3.05™ 6.14™ 536"
QLIKE 2229 2,70 3.44™ 265 2117 2.74™ 4727 433" 2,10  3.12™" 548 498"
CW test 439" 6.03" 920" 6.72™ 1717 3.69™ 8.89™" 5427 1.62°  4.68™ 12.81" 517
Low-Volume Periods
Average Loss
MSE 0.509 0.520 0.510 0.504 0.515 0.472 0470 0464 0.461 0.461 0.477 0473 0468 0471 0.476
MAPE 0.765 0.772 0.763 0.757 0.771 0.733 0.731 0.734 0.730 0.730 0.781 0.778 0.779 0.760 0.773
QLIKE -5.563 -5.559 -5.569 -5.572 -5.557 -5.395 -5398 -5.387 -5.386 -5.389 -5.166 -5.168 -5.157 -5.178 -5.175
GW tests on Loss Differences Relative to the Benchmark HAR model
MSE 2417 -030 233" -1.19 1.54 239" 3.11™ 2.72™ 1.74° 2.61™ 1.05 0.15
MAPE -1.86" 097 243" -1.12 144 -0.34 0.53 0.44 0.93 052 272" 0.75
QLIKE -0.86  2.81"" 2.64™ -1.07 1.44 -2.09" -217" -1.25 0.53 -2.03" 1.50 0.86
CW test 1.58"  3.91™ 738" 579" 1.12  3.49™ 745" 436™ 1.45™ 3.83™" 8.01™" 447"
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Table 11. Out-of-Sample Forecasting with Perpetual Market Volatility: Realized Kernel as Volatility Proxy

This table replicates the out-of-sample forecasting analysis from Table 9 using realized kernel as the target volatility measure instead of realized volatility.
The forecasting models are identical to those in Panel A of Table 9: a benchmark HAR model, three HAR extensions incorporating perpetual market volatility
at daily, weekly, or monthly horizons, and a Kitchen Sink model including all three, estimated in linear specifications. All models are estimated recursively
with an initial window of 180 days. The table reports average forecast losses (MSE, MAPE, and QLIKE), GW test statistics relative to the HAR benchmark,
and CW test statistics for Granger causality. ***, ** and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Horizon Daily Weekly Monthly
Model HAR RVS® RVESP RUPIP Sink HAR RVS® RVESP RUPSP Sink HAR RVE" RVESP RUPIP Sink
High-Volume Periods
Average Loss
MSE 0.860 0.854 0.848 0.837 0.843 0.375 0370 0368 0.358 0.358 0.387 0380 0373 0.356 0.356
MAPE 1.313 1.282 1.280 1.252 1.251 0.688 0.679 0.676 0.657 0.656 0.768 0.756 0.746 0.722 0.722
QLIKE -5.638 -5.675 -5.674 -5.704 -5.708 -5.882 -5.895 -5.899 -5.922 -5.923 -5.628 -5.644 -5.655 -5.680 -5.680
GW tests on Loss Differences Relative to the Benchmark HAR model
MSE 1.47  4.02"" 4.08™ 2.65™ 273" 3.44™" 3.82™ 3.68™ 432" 4457 651" 6.36™
MAPE 5277 6.18™  5.62™" 5.63™ 4.00"" 4.92"" 509" 5.04™ 450" 4.60™" 636" 6.25™
QLIKE 6.32"" 6.66"" 6.02"" 6.42™ 6.00"" 6.93™ 6.68"" 6.56™ 6.06™" 559" 7.19"" 7.15™
CW test 10.64™" 14.43™" 14.24™" 11.56™ 10.66"* 14.08™" 13.50"" 13.39"" 10.40"" 13.88™" 14.79"" 14.46™"
Low-Volume Periods
Average Loss
MSE 0.695 0.692 0.689 0.684 0.691 0.478 0477 0478 0457 0.465 0.444 0443 0437 0410 0.425
MAPE 1.027 1.012 1.015 1.011 1.014 0.736  0.733 0.742 0.730 0.742 0.737 0.739 0.751 0.727 0.751
QLIKE -5.483 -5.503 -5.491 -5.487 -5.492 -5.489 -5.491 -5472 -5470 -5.461 -5.300 -5.296 -5.272 -5.265 -5.247
GW tests on Loss Differences Relative to the Benchmark HAR model
MSE 0.40 136 1.91° 0.51 025 -0.04 352" 212" 0.38 1.15 629" 2.94™
MAPE 1.61 1.98" 1.84° 1.09 0.77 -1.45 0.71 -0.72 -0.67 -2.12" 150 -1.68"
QLIKE 2.10 1.30  0.52 0.75 049 -3.66"™" 247" -3.46™ -0.99 -3.84™ -4.80™" -6.10""
CW test 6.11""  8.49™ 12.18"™ 7.73™ 6.16™" 6.80™" 11.41™ 10.41™" 5.88""  7.28™ 11.26™" 9.72™
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Table 12. Out-of-Sample Forecasting with Perpetual Market Volatility: Robustness to
Estimation Methods

This table assesses the robustness of out-of-sample forecast performance to alternative estimation
methods, using perpetual market volatilities as predictive variables. Only the benchmark HAR model
and the Kitchen Sink model (which includes perpetual volatilities at all horizons) are considered in
linear specifications. Panel A reports results based on recursive estimation with an initial sample of 365
days, while Panel B uses rolling estimation with a fixed window of 180 days. For each forecast horizon,
the table presents average forecast losses (MSE, MAPE, and QLIKE), along with GW test statistics
comparing each model against the HAR benchmark, and CW test statistics for Granger causality. The
analysis is conducted for the full sample, and separately for high and low perpetual trading volume
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periods. ©*, ™, and " indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Panel A: Recursive estimation with an initial sample of 365 days

Horizon Daily Weekly Monthly

HAR Sink HAR Sink HAR Sink

High-Volume Periods

Average Loss

MSE 0.682 0.667 0.402 0.383 0.404 0.367
MAPE 1.020 0.989 0.706 0.675 0.795 0.742
QLIKE -5.782 -5.817 -5.806 -5.841 -5.535 -5.583
GW tests on Loss Differences Relative to the Benchmark HAR model
MSE 1.97" 2.90"" 4.54"
MAPE 2.62" 3.26™ 453"
QLIKE 2,97 3.57™ 4.15™
CW test 6.72" 5.03™ 4.15™

Low-Volume Periods

Average Loss

MSE 0.522 0.516 0.452 0.443 0.408 0.399
MAPE 0.795 0.787 0.713 0.706 0.717 0.711
QLIKE -5.571 -5.580 -5.436 -5.442 -5.244 -5.251
GW tests on Loss Differences Relative to the Benchmark HAR model
MSE 2.33" 2.42™ 2.10"
MAPE 2.29™ 1.32 1.06
QLIKE 2.65™ 1.30 1.31
CW test 6.94™ 3.28™ 3.06™
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Table 12 —Continued

Panel B: Rolling estimation with an estimation window of 180 days

Horizon Daily Weekly Monthly
HAR Sink HAR Sink HAR Sink
High-Volume Periods
Average Loss
MSE 0.491 0.491 0.419 0.409 0.423 0.339
MAPE 0.713 0.694 0.624 0.581 0.563 0.527
QLIKE -5.640 -5.677 -5.547 -5.637 -5.482 -5.592
GW tests on Loss Differences Relative to the Benchmark HAR model
MSE -0.04 1.27 2.24™
MAPE 3.71™ 4,67 2.75™
QLIKE 747 8.94™" 7.85"
CW test 5.01" 714" 6.50"""
Low-Volume Periods
Average Loss
MSE 0.630 0.660 0.315 0.342 0.222 0.218
MAPE 0.866 0.851 0.501 0.551 0.469 0.487
QLIKE -5.968 -5.996 -6.074 -6.034 -6.000 -5.963
GW tests on Loss Differences Relative to the Benchmark HAR model
MSE -1.39 -1.73" 0.21
MAPE 0.95 -1.63 -0.40
QLIKE 1.62 -1.26 -0.78
CW test 4.08" 2.34" 2.88"
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