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Abstract

Yes, by decreasing firm risk, not by increasing profitability, and with investors taking years to
recognize the value created. We start, using novel Al patent data, by documenting significant
corporate production of Al innovation as early as 1990. Then, we show that a signification
motivation for a firm's Al production is the mutually reinforcing effects of the firm's innovation
capacity (exogenous R&D stock) and its labor inputs' Al exposure (both the firm's own and its
customers'). We use the interaction of these two effects to instrument for Al production. We find
that producing Al creates firm value through a large, permanent decrease in risk (cash flow and
stock return, systematic and idiosyncratic). Further evidence suggests that Al lowers physical
capital intensity and increases bargaining power for producing firms. The initial market reaction
to Al patent announcements is economically small, but abnormal stock returns thereafter are
significantly positive (about 5% per year) for (only) roughly three years, suggesting initial
undervaluation followed by gradual correction. We find no evidence of investor learning, except
during the past five years. We empirically distinguish producing Al innovation versus Al
adoption, automation, general technology, and other potential confounds.
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1. Introduction

Artificial intelligence, the technology of machine cognition, has grown explosively in
recent years. In this paper, we study the production of Al innovation, and its value implications
for producing firms, using newly available USPTO data on Al patents.>? We focus on patented
innovations because patent protection allows the firm to control the technology it produces. We
document that, in the aggregate, Al is increasingly a prominent subset of all innovation activity
during the past three decades. In 1990, Al already accounted for 5% of all innovation activity,
and has risen to 15%-35% of innovation today.® Additionally, Al innovations are consistently
more valuable over time than non-Al innovations, in terms of both scientific and commercial
value, and encompass far more technological breakthroughs. Moreover, as expected from a
general purpose technology, Al innovation has diffused widely over time across industries. For
instance, Al accounts for at least a majority of all innovation in about 20% of industries today.
Finally, U.S. publicly traded firms dominate Al, producing about 70% of Al innovation by U.S.
firms.

Focusing on publicly traded firms over the past three decades, we document causally how
Al innovation creates value for producing firms, and that the stock market appears to
consistently undervalue Al innovation for roughly three years after it is produced. Al innovation
still only has a small, brief positive impact on profitability to date. Instead, producing Al

innovation creates value principally by substantially and permanently decreasing risk (cash flow

! Production of new Al technology is distinct from the adoption of previously developed Al technology as studied
by prior literature (e.g., Alekseeva, Giné, Samila, and Taska (2020) and Babina, Fedyk, He, and Hodson (2022,
2024a, 2024b)). The distinction between production and adoption is important in both conceptual predictions,
notably for firm risk, and in the corresponding empirical effects, as our paper shows.

2 As we summarize in Section 2.1, the USPTO data, from Giczy, Pairolero, and Toole (2022), classify patents as
"Al" and "non-Al" using stratified machine learning that assigns patents a predicted probability of being Al. Al
compasses the eight Al component technologies identified by the National Institute of Standards and Technology.
The machine learning patent classification is validated by Al specialist USPTO patent examiners, and it is shown to
outperform alternatives classifications in minimizing false positives and negatives.

¥ The share of Al innovation is highest when measured based on the scientific or commercial value of patents.



and stock return, systematic and idiosyncratic). We find that firms direct their innovation
capacity toward producing Al technology based on the extent to which Al substitutes for or
complements labor, both the firm's and its customers'. Our evidence on mechanisms suggests that
Al technology lowers the producing firm's physical capital intensity and increases its bargaining
power. We find no evidence over three decades that investors learn more quickly about the value
of Al innovation, except for the past five years during which the initial market reaction remains
economically small and there is no longer a significant drift after Al patent announcements.

We start our analysis with a brief conceptual framework (with illustrations) of how
producing Al innovation affects firm value. Al, as machine cognition technology, can sort
through large and multi-dimensional flows of data (text, vision, speech, etc.), learn from its own
evolving history, and dynamically update itself. As such, it can substitute for or complement
many of the main functions of a firm's employees: information acquisition and forecasting (e.g.,
estimating customer demand using machine learning); monitoring (e.g., supervising employee-
customer interactions with natural language processing and speech recognition); and decision
making (e.g., autonomous inventory management or computer vision assisted quality control).
Al innovations corresponding to the foregoing applications were being produced (and patented)
at least as far back as the early 1990s.* Moreover, there is significant production of (patented) Al
innovation even in non-technology industries (e.g., aircrafts, motor vehicles, drugs, petroleum,
and industrial equipment).®

Turning to firm value implications, producing Al innovation can naturally increase
profitability through all of the above applications of the technology. However, Al can also

decrease risk, by improving the reliability of the firm's execution and its responsiveness to

* We provide examples of a wide variety of patented machine cognition tasks in Section 2.2.
> This is evident from ranking industries based on patented Al innovation, which we examine in Section 3.2.



changing business conditions. Importantly, when the firm can control its technology (e.g., Al
innovations that are patent protected), it can create more value, by, for instance, excluding others
from using its technology (e.g., its product market competitors), which will decrease the firm's
correlation with the rest of the economy and decrease its risk.

Turning to a detailed exposition of our empirical analysis at the firm level, we begin by
examining a potentially significant motivation for firms to produce Al innovation. Our intuition
is that firms that benefit more from Al technology will devote more innovation resources to
producing it. Firms that benefit more are those whose own labor, or their customers', is more
easily substituted for or complemented by Al technology. We refer to such firms as having high
Al exposure.

This underlying intuition forms the basis of our empirical strategy for identifying the
causal effect of Al innovation. If a firm with exogenously high Al exposure experiences an
exogenous increase in innovation capacity, it will produce more Al innovation compared to an
otherwise identical firm with exogenously low Al exposure. We instrument actual Al innovation
using the interaction of two mutually reinforcing incentives for a firm to produce Al innovation:
the firm's (industry level) exposure to Al technology, and the firm's (R&D tax credit induced)
innovation capacity. In what follows, we describe the construction of these two components and
explain their plausible exogeneity.

We construct the two components of our interaction instrument (a kind of shift-share) as
follows. For the first component, we calculate industry-level Al exposure scores using

occupation-level (SOC) Al exposure scores® weighted by employment in each occupation in

® From Felten, Raj, and Seamans (2021). These scores capture the extent to which labor in an occupation can be
substituted for or complemented by Al technology.



each industry (SIC3) fixed before the start of our sample period.” An important advantage of
using time-invariant, pre-sample period, industry-level Al exposure is that it minimizes the
possibility that firms choose their (firm-level) Al exposure endogenously with firm outcomes.
For the second component, we construct the firm's plausibly exogenous R&D capital stock
following the literature.? Specifically, we predict firm-year R&D spending with federal and state
R&D tax credits, which vary over time across the firm's R&D hubs located in different cities.
We then cumulate predicted R&D spending to R&D capital stock over the firm's prior history.
We address potential threats to our identification below, after presenting our main results on
valuation implications.’

In the first stage of our instrumental variables analysis, we predict the production of Al
innovation. We find that for a typical increase in our interaction instrument, Al patent counts
increase by about 13% relative to the mean, roughly similarly for both the firm's own Al
exposure and its customers' (each exposure varying across industries).® We use this natural
measure of Al innovation activity, Al patent counts, in our baseline analyses throughout the
paper, but the results are similar using alternative scaling variables such as total assets and total
patent counts.

We then empirically examine the value created by corporate production of Al innovation,

starting with Al patent grant announcements. The initial market reaction is economically small

" We measure the Al exposure of a firm's customers analogously, using our industry Al exposures combined with
inter-industry product purchase weights from the BEA's input-output tables.

® For instance, see Wilson (2009); Bloom, Schankerman, and Van Reenen (2013); Hombert and Matray (2018); and
Babina and Howell (2024). The latter provide comprehensive evidence for the exogeneity of R&D capital stock thus
constructed, including their own evidence as well as that from the prior literature.

° As detailed in Section 4.1., the IV results throughout the paper are incremental to controlling for the direct effects
of (tax credit induced) R&D capital stock and Al exposure. We also control for whether the firm produces patents as
well as the firm's non-Al patent count, size, and age. Finally, we sweep out persistent differences across firms, three-
digit SIC industries (which, indirectly, largely sweep out Al exposure), two-digit SIC industries each year, and the
firm's headquarters state each year (which, indirectly, largely sweeps out R&D capital stock).

19 The results throughout the paper are robust to using either instrument (firm or customers) alone. We use both
instruments in our baseline analysis because we have no theoretical basis for favoring either exposure, whereas we
can increase the precision of our 1V estimates by using both exposures together.



during the first event week (6.4 basis points for the average firm-day). Rather than extending the
event window, we focus instead on using annual Al patent counts to predict future annual stock
returns because this lower frequency analysis has better statistical and economic properties.™

We start our returns regression analyses using actual Al patent grants, which are readily
observable to investors, and form portfolios each year. We find that a high minus low Al stock
portfolio earns risk-adjusted returns of roughly 50 basis points per month. This could be
consistent with either compensation for risk (if producing Al increases risk), or with investors
only gradually impounding into stock prices the positive value effects of producing Al
innovation (if producing Al increases profitability and/or decreases risk). By contrast,
comparably constructed non-Al patent portfolios do not reliably spread returns.

We then exploit our IV approach to more credibly identify the effect of producing Al
innovation on returns in a reduced form setting. We double sort stocks (independently) into
portfolios based on firms' (tax credit induced) R&D capital stock and their Al exposure. We
again find that portfolios, at the intersection of these double sorts, outperform by about 50 bps
per month (i.e., the high minus low Al exposure spread netting out the high minus low R&D
capital stock spread). Our portfolio returns results are similar using a wide range of factor
models.

Additionally, we implement our 1V analysis in monthly Fama-MacBeth cross-sectional
regressions using all sample firms over three decades. This more demanding approach allows us
to include a battery of control variables like in our first stage IV regressions (e.g., R&D capital
stock, Al exposure, and non-Al patent counts) as well as established determinants of stock

returns. We again find a significant return spread, comparable in magnitude to the preceding

11 As explained in Section 6.1, the annual frequency improves measurement precision of the firm's Al innovation
activities: capturing their scale and synergies while mitigating their persistence, all within the firm; and accounting
for their undervaluation by investors. It also makes possible our IV analysis, for identification.



portfolio analysis. The results of our stock returns analyses, taken together, consistently indicate
that there is a small initial market reaction to producing Al innovation followed by a significant
return spread for roughly three years.

We next examine how producing Al innovation creates firm value using the canonical
financial drivers of value: cash flows and risk. Using detailed firm-year panel data spanning
three decades, we focus on our IV estimates to identify the causal effect of producing Al
innovation. Since the full productivity potential of Al (e.g., as measured by profits) may not be
realized by the end of our sample period,*? our estimates may be understated.

In our first IV results, we find that after producing Al innovation (i.e., during the year
after we measure Al patent grants), producer firms become transitorily more profitable. For a
typical 10% increase in instrumented Al patent counts, net income increases by roughly 0.7
percentage points relative to total assets. However, this first year effect becomes insignificant by
the second year. Recognizing that experience with Al production in the past may facilitate Al
production in the future, we explore here the moderating role of experience. The evidence
suggests that the effect of Al production on profitability is driven by firms with more experience
producing Al innovation (as measured by the firm's past Al patent stock).

More significantly, Al producer firms become permanently less risky. A 10% increase in
instrumented Al patent counts decreases the volatility of net return on assets by about 7%. This
lower cash flow volatility is also reflected in lower stock return volatility, which decreases by
roughly 2%. Both effects persist for at least five years and are also magnified by experience
producing Al innovation. Decomposing total stock return volatility into systematic and

idiosyncratic components, we find that both decrease permanently. Our finding that Al

12 E g., Brynjolfsson, Rock, and Syverson (2019) argue that Al technology is still in the early stages of diffusing
across sectors and into complementary technologies.



production decreases risk is consistent with the firm using its (patented) Al technology to
improve the reliability of its execution and its responsiveness to changing business conditions.
Furthermore, in the second half of our sample period, the decrease in risk is slightly larger (but
there is no difference in profitability or future stock returns). At the same time, all of our results
(profitability, risk, and returns) are stronger for higher quality Al patents (as captured by higher
scientific and commercial value).

Taken as a whole, the results are consistent with investors only gradually impounding
into stock prices over several years the positive value effects (mainly, lower risk) of producing
Al innovation. Undervaluation taking several years to be corrected is consistent with limits to
arbitrage: few people may really understand both Al technology itself and how to value it, during
most of our sample period; and valuing long-term risk may be particularly difficult (as opposed
to short-term profitability).

We now turn to potential threats to our identification. We do have plausibly exogenous
variation in the firm's innovation capacity, as captured by its (tax credit induced) stock of R&D
capital (incrementally to our demanding set of fixed effects). However, since our measure of Al
exposure only varies at the industry level (not at the firm-year level), the main threat to
identification is any omitted factor at the industry level that is correlated with Al exposure and
reinforces the effect of the firm's innovation capacity on profitability, risk, or other firm
outcomes. We address the possibility that firms respond to random shocks to their innovation
capacity differently in different industries, but specifically not because of different Al exposures,
using a variety of aggressive specifications (Section 7.3). For instance, we include industry fixed

effects interacted with R&D stock or industry-state fixed effects, or we include lagged dependent



variables. We are also able to empirically distinguish the production of Al innovation from
potential confounds such as Al adoption, automation, and general technology.*®

We then provide suggestive evidence on various mechanisms through which producing
Al innovation can increase firm value, particularly when the firm controls its technology and
exclude others from using it. First, Al can enable the firm to use its physical assets more
efficiently or even require less physical capital to produce the same or more output. Indeed, we
find a decrease in physical capital (e.g., PP&E) as well as investment (e.g., capex). Second, Al
can increase the firm's bargaining power vis-a-vis its customers, employees, and other business
counterparties. Some benefits of Al technology can accrue to the producer firm's counterparties
downstream and upstream in its supply chain (e.g., Al embedded products), which the producer
firm can use to negotiate business deals that are more lucrative or more stable for itself.. We find
evidence of more stable sales and costs, and of greater product differentiation. Third, we find that
Al innovation increases labor productivity (e.g., profit per employee), but only transitorily so
(much like for profitability, as measured by net income to total assets). Moreover, Al innovation
does not affect employment or the overall scale of the firm, which suggests that Al complements,
rather than substitutes, labor.

In our final analysis, we examine the financial policy implications of Al innovation. Both
an increase in expected future profitability and the decrease in risk that we document would
enable the firm to be more aggressive with its financial structure. Our results, which include
higher leverage and lower cash holdings, indicate that this is the case.

We contribute to the literature on the economics of artificial intelligence. The existing

literature focuses on Al adoption and finds that it increases firm growth and product innovation

3 We accomplish this by testing the effect of corresponding control variables from the literature, respectively,
Babina, Fedyk, He, and Hodson (2024a)), Zhang (2019), and Loughran and Ritter (2004).



(Alekseeva, Giné, Samila, and Taska (2020) and Babina, Fedyk, He, and Hodson (2024a)) while
flattening organizational hierarchies (Babina, Fedyk, He, and Hodson (2022)) and reducing
hiring in non-Al positions (Acemoglu, Autor, Hazell, and Restrepo (2022)). Other studies find
that, in high skill occupations, potential applications of Al change traditional work procedures
(Grennan and Michaely (2021, 2020)). Al tools are also used to estimate latent corporate
characteristics such as culture and climate exposure (Li, Mai, Shen, and Yan (2021), Li, Mai,
Shen, Yang, and Zhang (2025), and Sautner, van Lent, Vilkov, and Zhang (2023)).

We, instead, focus on the production of Al innovation. We show that it increases a firm's
future stock returns, reflecting a large, permanent decrease in risk (cash flow and stock return,
systematic and idiosyncratic) and a small, transitory increase in profitability. Our results are
robust to controlling for Al adoption as captured by the resume or job posting measures used in
prior literature. In contrast to our Al production, Al adoption in the literature increases
systematic risk (market beta increases) and decreases idiosyncratic risk, leaving total risk
unchanged (Babina, Fedyk, He, and Hodson (2024b)). These complementary findings are
consistent with opposite control strategies for various Al innovations: the producer firm keeping
its technology for its own use, as opposed to the producer firm giving it away to other firms for
adoption. We summarize the contrasting risk mechanisms in Section 7.3.3. There does not
appear to be evidence on profitability in the prior literature.

Moreover, a recent literature on the productivity implications of Al innovation argues
that Al may not enhance productivity as much as commonly expected, or its productivity
enhancements will take much longer to materialize (Brynjolfsson, Rock, and Syverson (2019)).

Our examination of Al production over three decades suggests that, at least for Al producer



firms, both forward looking stock prices and realized corporate operational outcomes reflect
some productivity gains from Al innovation.

Our paper uniquely provides causal evidence, from all U.S. publicly traded firms over the
past three decades, showing that, and how, producing Al innovation, incrementally to non-Al
innovation, increases firm value. Other recent studies examine stock returns around particular
events to uncover a moderating role on firm value of the firm's labor's Al exposure: Google's
public launch of TensorFlow (Rock (2021)) and OpenAl's ChatGPT (Eisfeldt, Schubert, and
Zhang (2023)). Earlier studies in the literature on corporate innovation and stock returns examine
the predictive role of R&D intensity (Chan, Lakonishok, and Sougiannis (2001)), innovation
efficiency and originality (Hirshleifer, Hsu, and Li (2013, 2018)), commercialization of R&D
(Cohen, Diether, and Malloy (2013)), and firm size (Stoffman, Woeppel, and Yavuz (2022)).

Finally, we contribute a novel identification methodology for the production of Al
innovation. We use a two variable interaction instrument for actual Al production: R&D capital
stock induced by state-level R&D tax credits and industry-level Al exposure. Prior studies in this
emerging literature use interaction instruments for local housing prices (Chaney, Sraer, and
Thesmar (2012) and Adelino, Schoar, and Severino (2015)) and Chinese development finance
(Dreher, Fuchs, Parks, Strange, and Tierney (2021)). The existing Al literature focuses on
identifying the causal effect of Al adoption. To this end, Babina, Fedyk, He, and Hodson (2024a)
exploit the Al research embedded in university alumni networks at the firms. Grennan and
Michaely (2020) use news headline length to predict the usefulness of Al in stock analysis. Rock
(2021) and Eisfeldt, Schubert, and Zhang (2023) use product launch events.

The rest of this paper is organized as follows. Section 2 describes the measurement of Al

innovation, and Section 3 characterizes Al innovation. Section 4 presents the methodology.
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Section 5 examines a significant motivation for Al production. Section 6 and Section 7 examine,
respectively, the value implications and key value drivers of Al production. Section 8 and
Section 9 examine the mechanisms underlying Al production and its financing implications,
respectively. Section 10 concludes.

2. Measurement of Al Production
2.1. Measuring Al Production

To measure the production of Al innovation so that we can study its effects, we use
patents that are classified as "Al patents" and to which we refer as such throughout the paper. As
measures of innovation output, Al patent grants capture the capability of the firm to take
commercial advantage of the Al technology that it produces. It can do so by implementing Al in
its own operations, or supplying Al to its business counterparties, especially its customers, either
directly (e.g., through patent transfers) or indirectly (e.g., embedded in product and services).

To classify patents in the USPTO database as Al and non-Al, we use the recently
released classification of Giczy, Pairolero, and Toole (2022). Traditional methods of identifying
specific technologies in patent documents are not well suited to identifying Al technology in
patent documents. Perhaps the greatest difficulty with Al is that it is a general purpose
technology and hence necessarily overlaps technology fields. Consequently, Al cannot simply be
captured by a limited, predetermined set of widely used technology classes (e.g., CPCs) or
keywords. While previous approaches like these (e.g., see Cockburn, Henderson, and Stern
(2019)) tend to be correct about the patents that they identify as "Al", they also tend to miss a
large number of patents that are in fact "Al".

As an improvement, Giczy et al. (2022) take a stratified machine learning approach. We

provide a summary of their approach here, and refer the reader to Appendix 1 for a description of
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the key details. First, Al is broken down into eight component technologies (e.g., knowledge
processing and speech recognition). Next, a set of "surely Al" patents is identified as those that
are at the intersection of four technology classification systems (CPC, IPC, USPC, and DWPI).
Then, a set of "surely non-Al" patents is identified, after excluding patents that are even remotely
related to the "surely Al" patents (e.g., through patent family links or citations) and technology
classes with abnormally high share of "surely Al" patents.

A machine learning model is trained using the "surely Al" and "surely non-Al" patents, in
several passes designed to minimize both false positives and false negatives in the subsequent
application to the universe of patents. After training, the model subsequently evaluates all patent
documents for their Al content, and assigns them a predicted probability of the patent containing
a particular Al component technology. Finally, if the patent is predicted to be Al based on any
Al component technology, it classified as an Al patent.

For a classification of Al and non-Al patents to be accurate, it must naturally minimize
both false positive (minimal patents classified as "Al" that are not Al) and false negatives
(minimal patents classified as "non-Al" that are in fact Al). With both of these objectives in
mind, Giczy et al. (2022) carefully test their patent classification and show that it outperforms
the existing alternatives.*

2.2. Understanding Al Patents

To better understand the patents that we use to measure Al innovation, we provide

diverse examples of Al technologies, firms, and industries that use such patents in processes and

products. These examples illustrate that (patented) Al technologies include a wide variety of

4 The authors use four patent examiners at the USPTO, who are specialists in Al, to classify patents as Al or non-Al
from 800 randomly selected patent documents. Each patent is reviewed by at least two examiners. If the first two
examiners disagree, a third examiner adjudicates. Finally, the patent examiners' annotations are used to evaluate the
validity of the authors' prediction model for false positives, false negatives, and a composite measure of the two. The
authors' model is compared (and found superior to) existing alternative models.

12



machine cognition tasks, they can be used by both the producer firm and its customers, and they
can be used across many industries. The examples, shown in Appendix Table 1, are inspired by
the characterization of firm-level Al innovation in Section 3.2 (especially the ranking of
industries based on Al patents in Table 1). We credit USPTO (2020) for several of our
illustrative examples.

Unsurprisingly, Al is ubiquitous in the various technology industries. A highly visible
example is the virtual assistant systems in consumer electronics produced by all the big
technology firms. This includes Siri from Apple (e.g., USPTO patent number 10043516), which
relies on speech recognition. Al hardware is also prominently produced and used in the industry
itself. An example is IBM's device to improve computational efficiency modeled on the
information processing structure of the biological brain (patent 8892487).

Many non-technology industries are also prolific producers and users of Al technology.
In transportation, the automated driving systems used in motor vehicles (both personal and
commercial) by Toyota and other manufacturers (patent 8384776) are powered by "knowledge
processing™ Al technology. Similarly, Boeing and other major aircraft manufacturers have been
equipping airplanes many decades ago with automated flying systems that are dynamically
updated based on historical experience (patent 3987279). In communications, Sprint uses
"planning and control” Al technology to assess and improve signal quality for its network (patent
8140069). In drugs, Pfizer uses computer vision to both develop cancer treatments and to
evaluate their performance on the body (patent 7231074).

Less traditionally innovative industries are also active producers and users of Al
technology. In oil and gas exploration and development, Chevron uses "evolutionary

computation™ Al technology to estimate reserves (patent 7657494). Delta and other airlines use
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Al to forecast unscheduled component orders and labor for repairs (patent 7370001). Al
production occurs in even less obvious industries. In consumer products, Coca-Cola uses
machine learning to dynamically optimize the operation of its dispensing machines (patent
4827426). Starbucks, among other mass market restaurants, uses Al to identify customers,
predict their orders, and begin preparing them (patent 9218633). Overall, there is great diversity
in the technologies captured by our sample of Al patents.
3. Characterization of Al Innovation

3.1. Aggregate Al Innovation

We begin our empirical analysis with a simple characterization of Al innovation in the
aggregate during the period 1990-2020. Our findings below demonstrate the significance of Al
as a unique type of innovation as well as the importance of understanding Al production and its
implication for firm value.

First, we examine Al innovation activity, as captured by patent grants. Specifically, we
measure innovation activity variously as: patent counts; the scientific value of patents, captured
by the number of forward citations made to patents; and the commercial value of patents,
captured by the estimates of the market value of patents made available by Kogan, Papanikolaou,
Seru, and Stoffman (2017).

[Insert Figure 1 about here]

Figure 1 shows that Al is a prominent subset of all innovation activity. Al constitutes,
very roughly, 5% of innovation activity in 1990. However, Al's share grows rapidly during the
next three decades, accounting, by 2020, for over 15% of patents by number, 25% by scientific

value, and 35% by commercial value.
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Additionally, Al patents are also more valuable than non-Al patents, both scientifically
and commercially. Even considering the rapid growth of patent counts, the value of the average
Al patent is about 50% higher in 2020, both in terms of scientific and commercial value. By
comparison, in 1990, the value premiums for scientific and commercial value are 200% and
parity, respectively (relative value results not tabulated).

[Insert Figure 2 about here]

We also examine the rate of "breakthrough™ innovations in Al versus non-Al technology.
Specifically, we use the measure of, and data from, Kelly, Papanikolaou, Seru, and Taddy
(2021), who use textual analysis to identify patent grants that are distinct from prior patents but
related to subsequent patents (i.e., highly novel and also highly useful). The unconditional rate of
breakthrough patents in our sample is roughly 12%. Figure 2 shows that, for Al patents, the
breakthrough rate gradually decreased from around 60% during the 1990s, during the early years
of Al technological development, to around 40% during the 2000s, and 25% during the early
2010s. However, even in the most recent period, Al innovations are roughly four times as likely
to be breakthroughs as non-Al innovations.

[Insert Figure 3 about here]

Second, we examine the diffusion of Al innovation throughout the economy. We would
expect to see evidence of widespread diffusion over time from a general purpose technology
such as Al. This is indeed what we find in Figure 3, whether we examine the production of Al
innovation itself or of innovation that uses prior Al innovation. Panel A shows that, by 2020, at
least half of all industries had Al patent grants that accounted for at least 10% of all patent grants
in the industry. Even if we consider only industries with at least a majority of Al patents in all

patent grants, Al innovation dominated almost 20% of all industries.
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Similarly, Figure 3 Panel B shows widespread diffusion of innovation using prior Al
innovation, as captured by backward citations of patent grants to prior Al patents. By 2020,
about 75% of all industries have patents that build on prior Al technology, if we require at least
10% of patent grants in the industry to cite a prior Al patent. Even if we require at least a
majority of patent grants to cite prior Al patents, then prior Al technology is built upon by about
30% of all industries.

Finally, as a suggestive validity check, we compare Al and non-Al patents in terms of
their "process innovation™ content. Since Al is a labor enhancing technology, we would expect
firms to produce Al innovations that improve the productivity of their operations or that of their
customers. We can shed light on such innovation using data on the process intensity of patents
from Bena and Simintzi (2025). A "process claim™ represents an innovation in task performance,
whereas a non-process claim represents other types of innovations, including but not limited to
product innovations. We find that for Al patents, the share of process claims (relative to all
claims) is roughly 50% on average, consistently during the past three decades. By contrast, for
non-Al patents, the figure is only 30%. This is broadly consistent with Al patents focusing on
improving task performance.

3.2. Firm-Level Al Innovation
[Insert Figure 4 about here]

We examine the importance of publicly traded firms in Al innovation as compared to all
patenting entities because publicly traded firms account for a large share of aggregate R&D
spending and patent grants. Figure 4 shows that publicly traded firms dominate Al innovation.

Relative to all patenting entities (not just firms), publicly traded U.S. firms consistently account
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for almost half of all Al patent grants (roughly 45% during the past two decades), compared to
only one quarter of non-Al patent grants during the past three decades (Panel A).

Moreover, in the U.S., publicly traded firms, relative to all firms (rather than all patenting
entities), account for an even greater share, close to two-thirds, of Al patents, compared to only
55% of non-Al patents (Panel B). Furthermore, we can restrict our sample to innovative public
firms, i.e., U.S. public firms with at least one patent, to calculate the share of firms that produce
Al innovation, i.e., at least one Al patent. Figure 4 Panel C shows that the proportion of
innovative public firms that also produce Al innovation has risen from roughly 15% in 1990 to
about 45% in the past decade.

In summary, publicly traded firms have historically, and continue today, to dominate the
Al innovation. Additionally, innovative publicly traded firms increasingly include Al in their
innovation activities. These findings motivate our focus on, and hence restriction of our sample
to, U.S. publicly traded firms in the rest of the paper.

We examine the sensibility of our measure of Al production. We rank industries, from
greatest to least, based on their total number of Al patents. We capture industries using three-
digit SIC codes. We use all publicly traded firms in our baseline sample and all industries with at
least 10 firms per year every year during our sample period.

[Insert Table 1 about here]

Table 1 shows a highly intuitive ranking of industries based on Al production. As one
might expect, computer programming, electronic components, and computer equipment have the
highest Al production. To illustrate the sensibility of our Al production measure, we rank firms
based on average annual Al patent counts. The top 20 firms, tabulated in Appendix Table 3, are

technology firms and widely known to be leaders in Al production. Meanwhile, Table 1 shows
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that the lowest Al production is in operative builders, clothing stores, and equipment rentals.
Importantly, however, even in the top quartile of industries, three of ten are not technology
industries (aircrafts, motor vehicles, and drugs), and there are no technology industries in the
second quartile (instead, e.g., assorted industries in petroleum and industrial equipment).

Our ranking in Table 1 is also broadly similar if, instead of ranking based on the total
number of Al patents, we eliminate the industry size effect by ranking based the mean number of
patents per firm. Furthermore, we observe that in some industries, Al production is dominated by
a few firms with a disproportionately higher level of Al production than their industry peers. For
example, 70% of the Al patents in petroleum refining are owned by Exxon Mobil and Chevron,
collectively. Therefore, we exclude from each industry the three firms with the highest number
of Al patents, and then rank industries with the remaining firms based on the number of patents
and the average number of patents per firm, respectively. The rankings are once again similar.

Following the impression in Table 1 that Al producer firms tend to be big and old firms,
we examine the size and age of Al producers to both firms that produce only non-Al innovation
and also firms that do not produce any innovation. In every year during our sample period, Al
producers are larger on average, twice as large or larger, whether we measure size using total
assets, sales, or market capitalization (and even if we exclude the largest 10 or 20 firms in each
group being compared). However, we do not find that Al producers are consistently and

significantly older, on average.”

5 Additionally, we verify that our results throughout the paper are robust to excluding big technology firms. We
classify firms as being in the technology industry using their SIC codes following Loughran and Ritter (2004).
Variously sorting firms based on total assets, sales, and market capitalization, we exclude the largest 20 technology
firms. These firms, in all sorts, account for about 60% of all Al patents in our sample. We find that our baseline
results are similar if we exclude big technology firms from our sample.
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4. Methodology
4.1. Instrumentation of Al Production

While Al patent grants are an observable and straightforward measure of Al innovation,
using them directly to study their effects raises potential endogeneity concerns. For instance,
while an increase in Al patent grants may lead investors to increase their appraisal of firm value,
a firm that anticipates an otherwise unrelated increase in its future value may also be better able
to finance its R&D spending and may receive more future Al patent grants. In addition to such
cases of reverse causality, omitted factors can generate an observed correlation between Al
patent grants and various corporate operational outcomes. In short, endogeneity makes OLS
estimates unreliable. For this reason, we do not interpret or draw inferences from our OLS
results. Nevertheless, we do tabulate all baseline results implemented as OLS regressions, as we
discuss in Section 7.

Our approach is to use an instrument that combines two key lagged components which,
together, predict future corporate outcomes, resulting from current Al innovation and plausibly
only through it. Our instrumental variable is the interaction of two components.'® Starting with
the first component, in order to produce innovation (Al or non-Al), firms need to have sufficient
innovation capacity to direct towards some specific technology such as Al. Empirically, firms
with a larger stock of R&D capital are good candidates to invest in and successfully produce Al
innovation. Second, the firm must have sufficient incentive to direct its innovation capacity
towards Al technology. Since Al is a labor enhancing technology, in empirical terms, firms that
are measurably more exposed to Al, through their own labor or that of their customers, are good

candidates to produce Al innovation. We develop each of these two measures below.

16 Prior studies that use interaction instruments include: Chaney, Sraer, and Thesmar (2012); Adelino, Schoar, and
Severino (2015); and Dreher, Fuchs, Parks, Strange, and Tierney (2021).
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To measure the first component of our instrumental variable, we use the user cost of
R&D, implied by time-varying federal and state R&D tax credits, to predict the R&D spending
of firms from 1988 to 2015. Specifically, using a panel of firm-years, we predict R&D
expenditures by regressing R&D expenditures on the firm's annual user cost of R&D along with
firm and year fixed effects. We calculate the firm's R&D user cost as the weighted average of
R&D user cost across the firm's R&D hubs, i.e., the states in which its inventors are located,
during the previous 10 years. If the firm does not have any patents during this period, we
calculate the firm's R&D user cost based on its headquarters location.'” We then capitalize
predicted R&D expenditures for each firm during the previous 10 years at a depreciation rate of
15%. This R&D capital stock is our measure of the firm's plausibly exogenous innovation
capacity. Data on the user cost of R&D are from Bloom, Schankerman, and Van Reenen (2013),
and our methodology is similar to that of Wilson (2009), Bloom et al. (2013), Hombert and
Matray (2018), and Babina and Howell (2024).

We then turn to the second component of our instrument, Al exposure. Al exposure refers
to the potential of Al to substitute or complement labor. We measure "Al exposure™ at the
industry level by calculating the weighted average occupation-level Al exposure using as
weights the occupational employment shares within the industry. Occupational Al exposures
data are from Felten, Raj, and Seamans (2021), and occupational employment shares data are
from the Bureau of Labor Statistics. We describe in detail the construction of occupational Al
exposure scores in Appendix 2. Felten et al. (2021) validate their measure by studying job
postings data (from Burning Glass Technologies). They find that occupational Al exposure

predicts higher Al skill requirements in job postings for the corresponding occupation. Providing

7 Derrien, Kecskés, and Nguyen (2023) document that, for firms with available data on inventor location, roughly
half of inventors are located in the same commuting zone as the firm's headquarters, with a predictably higher share
located in the same state.
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further validation, Acemoglu, Autor, Hazell, and Restrepo (2022) find that Al exposure
aggregated to the establishment level predicts higher Al hiring.

We measure a firm's Al exposure as its industry's labor's exposure to Al. Industries are
captured using three-digit SIC codes. We fix employment weights in the 1988-1990 period,
before the start of our sample period, to minimize the potential endogeneity of time-varying
employment shares. These data first become available in 1988, and only one third of all
industries (non-overlapping) are populated in each year during the first three years.® We
illustrate the sensibility of our Al exposure measure using the most dominant industry based on
Al production (see Table 1): computer programming (SIC 737). Appendix Table 4 Panel A
shows that the top 20 occupations, ranked by employment share, typically have high Al
exposures, with an average exposure percentile of 93.

To measure a firm's customers' Al exposure, we use the purchase share weighted average
Al exposure of the firm's industry's customer industries. Specifically, for each industry, we
obtain all customer industries from the Bureau of Economic Analysis industry input-output
tables along with the product purchase share of each customer industry, i.e., how much of a
given industry's products are sold to every possible customer industry. We then calculate, for
each industry, the purchase share-weighted average of the Al exposures across customer
industries. We again fix product purchase shares before our sample period, in 1987. As an
illustration of our customer Al exposure measure, consider once again the most dominant
industry based on Al production: computer programming (SIC 737). Appendix Table 4 Panel B

shows that the top 20 customers of the computer programming industry, ranked by product

18 To examine the possibility of firms time-varyingly choosing their industry, and hence Al exposure, endogenously
with firm outcomes, we use Al exposure based on industry fixed, alternatively, at the time of firms' first or last
appearance in our sample. Our results are robust to both alternatives.
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purchase share, are a diverse mix of industries. Computer programming itself has high Al
exposure, but so do its typical customer industries, with an average exposure percentile of 97.

We interact these two components — innovation capacity and Al exposure — to construct
an interaction instrument. When R&D spending increases (because the user cost of R&D
decreases as a result of time-varying federal and state R&D tax credits), firms with greater Al
exposure (whether of their own labor or their customers’) are more likely to produce Al
innovation because such firms benefit more from the labor enhancement of Al technology. We
lag our instrument by two years relative to Al patent counts to reflect the time it typically takes
for patents to be granted.

Since we can measure both the firm's own Al exposure and that of its customers, we
construct two corresponding interaction instruments. We use both interaction instruments
together in our baseline analyses because we have no theoretical reason to prefer one over the
other, and we can increase the precision of our estimates by using both instruments together.
However, we verify that our results are similar if we use each of our two interaction instruments
separately. In all main analyses, we report the Hansen J-test for whether the estimated effects of
Al patent counts are significantly different using each instrument separately. None of the
differences is significant. Additionally, we tabulate all baseline results implemented using each
instrument separately.'® As we discuss in Section 7, our estimates are similar in magnitude.

Our identifying assumption is that firms with different Al exposures will only be affected
differentially by changes in the (tax credit induced) R&D capital stock through the impact on Al

innovation. To ensure that we identify exclusively off our interaction instrument, all regressions

19 See Atanasov and Black (2016) for a discussion of this approach, and Angrist and Evans (1998) for an applied
example.
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directly control for the components of the interaction, i.e., (tax credit induced) R&D capital stock
as well as Al exposure.

A fortiori, we include fixed effects for state-years based on the location of the firm's
headquarters as well as fixed effects for three-digit SIC industries. This we do so that our results,
more broadly, cannot be explained by potentially confounding factors. State-year fixed effects
largely absorb R&D capital stock (because innovation activities are concentrated at firm
headquarters), but they additionally absorb all commonalities across geographically proximate
firms. Similarly, industry fixed effects entirely absorb Al exposure, but they also absorb all
additional commonalities across firms competing in proximate product markets.

4.2. Model Specification

Our main analysis begins with examining stock returns for Al producer firms at the
portfolio-month and firm-month level. Our analysis then proceeds to the firm-year level, where
we regress corporate outcomes (such as cash flow levels) on instrumented Al patent counts.

The first stage of our instrumental variable regressions is as follows:

IN(0.1+A41 Patent Counts;sic2,sic3,5:) =
a1 R&D _Stock; 2% Firm's_Al Exposuresics +
a2 R&D _Stock; .2 x Customers' Al _Exposuresic; +
a3 R&D_Stocki.2 + f-Xiy + 0y + Osics + 0i + Osic2.4 (1)

The Al patent counts predicted from the first stage are then used to explain outcomes in
the second stage of our instrumental variable regressions:

Outcome; sica.s1c3.50+1 = 0-IN(0.1+A41 Patent Counts;;) +

Br-R&D_Stocki .2 + P2-Xii + Osi + Osics + 0i + Osic2.4 (2)
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In the equations above, i indexes firms, SIC2 and SIC3 index two-digit and three-digit
SIC industries, respectively, s indexes the state of the firm's headquarters, and ¢ indexes year. .X;,
is a vector of firm-level control variables. The parameters J;, dsic2. Jsic3, and dy, are fixed
effects, respectively, for firms, two-digit SIC industry-years, three-digit SIC industries, and state-
years. Fixed effects for three-digit SIC industries completely absorb the direct effects of Al
exposure (both the firm's and its customers’), so Al exposure is dropped. State-year fixed effects
are based on the headquarters location of the firm.

By way of justification, our baseline specification includes a battery of control variables
and fixed effects to ensure that we identify exclusively off our interaction instrument and not its
components. The components of our interaction instrument, which we use as control variables,
we discuss in Section 4.1. A fortiori, we include fixed effects for state-years based on the
location of the firm's headquarters as well as fixed effects for three-digit SIC industries. This we
do so that our results, more broadly, cannot be explained by potentially confounding factors.
State-year fixed effects largely absorb R&D capital stock (because innovation activities are
concentrated at firm headquarters), but they additionally absorb all commonalities across
geographically proximate firms. Similarly, industry fixed effects entirely absorb Al exposure, but
they also absorb all additional commonalities across firms competing in proximate product
markets.

To further ensure that generic innovation is not driving our results, we control for the
number of non-Al patent grants as well as an innovation dummy variable for whether the firm
has at least one patent granted during the previous year. Additionally, we control for total assets
and firm age to account for the possibility that larger and older firms are more likely to invest in

and adopt advanced technologies. We also include firm fixed effects to rule out the possibility
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that time-invariant differences across firms can explain our results. Finally, we include fixed
effects for industry-years (using two-digit SIC industry) so that our results cannot be explained
by time-varying industrial commonalities.

Finally, in our baseline specification, we cluster standard errors by firm and also by
industry-year (using two-digit SIC industry), since firms in similar lines of business tend to
behave similarly. Before taking the logarithm of a variable that takes on zero values, we add a
constant approximately equal to a small increment of the values of the variable. We indicate
these constants in the corresponding results and/or Appendix Table 2. We verify that our results
are robust to adding a constant at least one order of magnitude higher or lower. We add a smaller
increment of 0.1 to Al patent counts before taking logarithms, rather than 1 as for non-Al patent
counts, because firms have roughly one order of magnitude fewer Al patents than non-Al
patents. To facilitate comparison across the two Al exposure (the firm's own and its customers'),
we standardize them to mean zero and standard deviation one. We winsorize variables whenever
appropriate at the 1% and 99" percentiles.

4.3. Sample and Descriptive Statistics

The firms in our sample are publicly traded U.S. operating firms excluding financials and
utilities. The data on firms are from CRSP and Compustat. The sample period spans 1990-2017
in terms of year t. We measure Al production using Al patent grants during the 12 months before
each fiscal yearend. We start our sample period in 1990 because by then there is a critical mass
of Al patent grants each year. We are also limited by the need for 10 years of patent data to
construct the tax credit induced R&D stock, which requires inventor locations going back to at

least 1978 (i.e., for R&D stock in 1988).
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Al patent counts are measured in year t. They are instrumented with R&D stock
measured at year t-2 and Al exposure fixed before the start of the sample period. Our data on
federal and state user cost of R&D end in 2015, which is the last year we are able to calculate the
(tax credit induced) R&D stock (and hence Al patent counts in 2017). Outcomes are measured in
year t+1. Since we need Compustat data from years t-2 to t+1, we effectively require at least four
years of Compustat data for each firm-year. Ultimately, the sample comprises 93,544 firm-year
observations from 1990 to 2017 corresponding to 10,362 unique firms.

[Insert Table 2 about here]

Table 2 provides descriptive statistics for the variables used in this paper. Variables are
defined in Appendix Table 2. In any given year, on average, 33% of firms have at least one
patent grant of any kind, and 10% have at least one Al patent grant (not tabulated). In the
average firm-year, Al patent counts are 0.66 compared to 6.5 for non-Al patents, a tenfold
multiple.

5. Motivation for Producing Al Innovation and First Stage of IV Regressions

We begin our firm-level analysis by examining a potentially significant motivation for
which firms produce Al innovation. Our underlying intuition is as follows. For some firms, their
own labor (or their customers') is more substitutable for or complementable by Al technology. If
such firms, with higher Al exposure, experience an exogenous increase in their innovation
capacity, they will produce more Al innovation. At the same time, this intuition is also the
econometric framework in subsequent analyses for our identification of the effect of producing
Al innovation. This, the first stage of our instrumental variable regressions, is based on Equation
1.

[Insert Table 3 about here]
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Table 3 Panel A presents the results for the regressions of actual Al production, measured
by Al patent counts, on our instrumental variable, the interaction of R&D capital stock and Al
exposure. Column 1 supports a mutually enforcing effect of the producer firm's innovation
capacity, measured by its (tax credit induced) R&D capital stock, and its own Al exposure.
Column 2 supports a similar effect, in economic magnitude and statistical significance, when the
producer firm's Al exposure is replaced by its customers' Al exposure.

We then combine the two related motivations for Al production by including both
instruments in our specification. Panel A Column 3 shows that, overall, each instrument remains
economically and statistically significant alongside the other. For a one standard deviation
increase in each of the two mutually reinforcing incentives for a firm to produce Al innovation,
i.e., (the logarithm of) R&D stock and both Al exposures (mean zero, standard deviation one),
Al patent counts increase by 15% (=2.3x(0.024x1+0.040x1)) relative to its mean. Alternatively
viewed, this is the estimated magnitude of the reinforcing effect of Al exposure on a given
change in R&D stock, and vice versa. We use the specification in Column 3 (both instruments
together) in our baseline 1V regressions. The results are stronger for the "customers instrument"
than the "firm instrument".*® However, our second stage results in this paper do not depend
critically on whether we use one instrument, the other, or both together.

We examine the extent to which the results depend on any of the eight component
technologies of Al. For firm-years with at least one Al patent, the average patent counts

corresponding to each Al component technology is as follows (each Al patent can have multiple

0 This can happen if Al technology that enhances the firm's labor factor of production also enhances its customers'
labor factor. As a test, we can mechanically remove the firm's Al exposure that overlaps its customers' Al exposure
(since our input-output data indicate positive intra-industry product purchases for most industries), at the expense of
a less accurate measure of customers' Al exposure. Specifically, we can exclude the firm's own industry from the list
of customer industries before calculating the purchase share-weighted average Al exposure of the firm's customers.
In this case, our coefficient estimate decrease in magnitude for the customers instrument, and it increases for the
firm instrument (with the firm instrument's t-statistic rising to 2.2) (results not tabulated).
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components): knowledge processing 3.43, speech recognition 0.17, Al hardware 2.01,
evolutionary computation 0.16, natural language processing 0.35, machine learning 0.78,
computer vision 1.21, and planning/control 3.45. For comparison, the average Al patent count
for firm-years with non-zero Al patents is 6.5. For each Al component technology individually,
we redo Table 3 Panel A (results not tabulated). We find similar results for the individual
components compared to our baseline aggregation of all components, especially for the Al
component technology with the largest share of Al patents.

To calculate the typical variation in Al production induced by our interaction instrument,
we start with our estimates in Table 3 Panel A. Let us fix the logarithm of R&D stock at its mean
of roughly 2, and increase Al exposure by one unit (i.e., one standard deviation), for both the
firm and its customers. This increases Al patent counts by roughly 13%
(=2x(0.024x1+0.040x1)) relative to its mean (Column 3), which we approximate as 10% for
ease of interpretation. We use this figure throughout the paper to calculate the estimate effect of
a typical change in our instrument on corporate outcomes of interest.

Finally, we emphasize that we are interested in the amount of Al innovation produced by
firms, so we use Al patent counts as our baseline measure. However, we also consider alternative
variables for scaling Al patent counts. These scaling variables include total assets, total patent
stock, total patent counts, and R&D stock (defined in Appendix Table 2). The results using these
alternative scaling variables, tabulated in Table 3 Panel B through Panel E, are similar to using

unscaled Al patent counts.
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6. Value Implications of Al Production for the Producer Firm

We examine the value implications of Al production for the producer firm using realized
stock returns. We defer examination of the key drivers of value (i.e., cash flow levels and cash
flow risk) to the next section.

6.1. Initial Market Reaction to Al Patent Grants

We begin by examining the initial market reaction to Al patent grants. Patent grants are
generally announced by the USPTO once a week, on Tuesdays. We perform perhaps the simplest
possible analysis: for every firm and patent grant date pair (“firm-date™ hereafter), we calculate
the market reaction for the firm-date during the week that starts with the patent grant date. Since
there can be multiple patent grants for a given firm-date, we divide the market reaction by the
number of patents. Thus far, we have not distinguished between different types of patents, but
going forward we only consider the subset of Al patents.

During the first week, the return for the average Al patent is about 1.2 basis points and
about 6.4 bps for the average firm-date. During the first four weeks after the average firm-date,
cumulative returns increase to roughly 33 bps, then to 73 bps after eight weeks, and to 117 bps
after 12 weeks. However, this apparent return drift after patent grants is contaminated by
overlapping events. Within one week of a firm-day with at least one Al patent grant, there is a
roughly 50% chance of at least one Al patent grant within one week. Within four weeks, this
probability rises to about 75%, and then to 85% within 12 weeks. Furthermore, each event-date
with at least one patent grant (Al or non-Al) is contaminated by having a different number of Al
and non-Al patents.

Our only conclusion thus far is that the initial market reaction to Al patent

announcements appears to be economically small compared to the subsequent return drift.
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However, the statistical and economic problems with short-run returns after weekly patent grant
announcements lead us to focus instead on long-run returns after a period of accumulating Al
patent grants. Specifically, we count the number of Al patents for one year, and then we use
them to predict returns during the following year. The first and most obvious benefit of this
approach is better capturing the scale of the firm's Al innovation activities. With the exception of
a few firms with big innovation programs, the presence or absence of a patent in a given week is
likely to be a noisy measure of the years-long cycle for a given innovation program, let alone the
multiple staggered innovation programs of a given firm. Second, a single patent granted one
week is unlikely to capture the synergies across the firm's various innovation programs as well as
its assets in place. Third, weekly patent grant announcements are persistent within firms, so
multi-week event returns likely inflate the value of early patents by the initial market reaction to
later patents, even if investors fully impound the value of a patent within one week of it grant
announcement. Finally, a large literature suggests that corporate innovation activities tend to be
undervalued by investors (e.g., Chan, Lakonishok, and Sougiannis (2001); Hirshleifer, Hsu, and
Li (2013, 2018); and Cohen, Diether, and Malloy (2013)). If this is the case, then the initial
market reaction to a patent grant likely underestimates its value to the firm.

By accumulating Al patent grants over a year, we improve the statistical properties of our
measure of Al innovation. If anything, we are still likely to underestimate long-run returns due to
staleness of our one year accumulation of Al patent grants (at a minimum, we ignore the first 6-
18 months of post-announcement drift, depending on whether the patent was granted at the
beginning or end of the year). However, our long-run approach allows to address potential

confounds with control variables and fixed effects. Our approach also allows us to instrument for
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Al production. Neither is possible for short-run returns after patent grant announcement events
(because we do not have a daily frequency instrument).
6.2. Returns on Portfolios Sorted by Actual AI Patent Counts

We then examine the returns on portfolios formed based on actual Al patent grants,
which are readily observable to investors. For every firm, for every calendar year, we count the
number of Al patents granted during the 12 months ending in the month of the most recent fiscal
yearend date. At the end of June of the following calendar year, we form portfolios based on Al
patent counts. Therefore, we begin using returns with at least a six month lag (for firms with a
Dec. fiscal yearend) and up to a 17 month lag (for firms with a Jan. fiscal yearend). These timing
differences result from consistently using the same baseline sample construction throughout the
paper.?! We hold portfolios from July through June of the following calendar year (12 months),
at which point we rebalance. Since we observe Al patent grants from 1990 to 2017, we examine
returns from July 1991 to June 2019, for a total of 336 monthly observations for each portfolio.

We next describe our portfolio sorts, which effectively create a zero total (Al plus non-
Al) innovation group (QO0) and four quartiles based on Al patents (Q1 through Q4). Specifically,
we sort firms into four quasi-quartiles (labeled as such because they contain an unequal number
of firms): the group of zero Al patents (“zero Al"), and three groups of non-zero Al patent sorted
into terciles ("low Al", Q2; "medium Al", Q3; and "high Al", Q4). Terciles (to construct groups
Q2 through Q4) are recalculated every year at the time of portfolio formation. We are limited to
sorting into these quasi-quartiles because only 10% or so of firm-years have non-zero Al patent
counts.

Within the group of firms with zero Al patents, we consider distinguishing between zero

innovation and non-zero innovation firms as measured by total (Al plus non-Al) patents. This is

2L In our returns analysis, we drop stocks with negative book-to-market ratios and stocks with prices lower than $1.
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because about two-thirds of our sample firms have zero total patents, and of the remainder, a
large majority further has zero Al patents. Therefore, we further sort the zero Al patents quartile
(defined as having zero Al patents) into two groups: zero total patents (Q0) and non-zero total
patents (Q1). We thus have a total of five portfolios to examine. We also form hedge portfolios
that long the high Al portfolio (Q4) and, variously, short the low Al portfolio (Q2) or either of
the "zero Al" portfolios (Q1 and QO0).

Our portfolios weightings are threefold: equally weighted, value weighted, and size
neutral. We use the size neutral approach as our baseline to mitigate the correlation between our
sorting variable, Al patent counts, and firm size. As the calculation of size neutral returns
demonstrates, this approach balances the equally and value weighted approaches so that returns
are neither driven by the smallest or the largest firms.?? We calculate size neutral returns, for any
arbitrary portfolio, as follows. We sort stocks in the portfolio into small and large groups,
independently, based on the NYSE median size breakpoint. We then value weight stocks within
each group within the portfolio, and calculate value-weighted returns for the small group
separately from the large group. Finally, we take the simple average of the returns of the small
and large groups. This is the size neutral return for the particular portfolio.

[Insert Table 4 about here]

Table 4 presents the results of these time-series portfolio return regressions. We use the
Fama and French (2015) five-factor model as our baseline, but the results are robust to using
alternative factor models (Section 6.4). The results indicate that our baseline Al patent counts
spread returns (Panel A), by about 50 basis points per month in our baseline size neutral

specification, for Al patent counts moving from Q1 to Q4. We conservatively choose Q4-Q1

22 For other applications of this approach, see Griffin and Lemmon (2002); Hirshleifer, Hsu, and Li (2013); and Liu,
Stambaugh, and Yuan (2019).
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(high Al minus zero Al) as our baseline hedge portfolio. Compared to our baseline, spreads are
somewhat lower when the short leg of the Al hedge portfolio is firms with low (but non-zero) Al
patents (Q4-Q2). If the factor models that we use capture differences in systematic risk between
non-zero innovation firms and zero innovation firms, then it is instructive to use zero innovation
firms as the short leg of the Al hedge portfolio. In this case (Q4-QO0), spreads are somewhat
higher than the baseline hedge portfolio (Q4-Q1). The results are similar if we use alternative
scaling variables for Al patent counts (Panel B to Panel E).

Additionally, we compare returns for Al patents to non-Al patents. Table 4 provides a
direct comparison using the relative frequency of Al patents to non-Al patents (to be precise, Al
patent counts divided by total patent counts). The results in Panel D are similar to the baseline
results.

As an alternative but less direct comparison of Al and non-Al, we redo Table 4 sorting
firms based on their non-Al patents analogously to our Al patent sorts. The zero innovation
group (QO) is the same as for Al patents, and non-Al patent counts are sorted into four quartiles.
Internet Appendix Table 1 presents the results. Comparing the baseline hedge portfolios
excluding Panel D,?® the return spread is higher for Al patents than non-Al patents, with one
exception, and is generally higher by 20 basis points per month or more. Comparing high Al
(Q4) to high non-Al (Q4) portfolios, the return spread is even bigger and always positive.
Moreover, while the Al spreads are reliable in economic and statistical significance, the non-Al
spreads are only reliably positive and significant for non-Al patent counts scaled by total assets
(Panel B). Taken as a whole, the results suggest that firms with observable higher Al production

have higher risk-adjusted returns.

%% The similarities across the two Panel Ds demonstrate the comparability of the two tables since the non-Al sort is
simply the reverse of the Al sort.
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We also examine the factor loadings for our hedge portfolios in Table 4. We do not find
consistent loadings on any of the factors in our baseline Fama and French (2015) five-factor
model (not tabulated). The market factor loading is almost never significant. The size factor
loading is occasionally significant, variously on small or big stocks. When the other factor
loadings are significant, they tend to characterize the portfolios as growth (rather than value),
weak profitability (rather than robust), and aggressive investment (rather than conservative). The
only extent to which there is any consistency between Table 4 (sorts based on actual Al patent
counts) and Table 5 (sorts based on R&D stock and Al exposure) is in the loadings on value and
weak profitability.

6.3. Returns on Portfolios Double Sorted by R&D Stock and Al Exposure

Studying how Al patent grants spread returns has the advantage of using a simple and
observable measure of Al production. However, the disadvantage is that Al patent grants are
endogenous to corporate outcomes. For instance, while higher future returns may result from
innovation output, investor anticipation of innovation output can lower financing costs and
thereby further increase the success of innovation efforts.

Motivated by our baseline IV framework, we also take the approach of examining the
returns on portfolios formed based on the two components of our interaction instrument. Inspired
by the reduced form of our IV regressions, we sort stocks into portfolios based on R&D stock
and Al exposure, which allows us to identify the plausibly causal effect of these IV components
on returns. Our approach is more complex than spreading returns with Al patent grants, but it can
be implemented (information obtained and spreads traded) by sophisticated investors. At the
same time, we are mindful of limitations of this quasi-reduced form approach, and we interpret

the results suggestively.
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Our reduced form approach is analogous to our previous approach. We consistently use
the same baseline sample construction throughout the paper. We still use information that is
available at the end of a given calendar year (year t), and we form portfolios at the end of June of
the following calendar year (year t+1). However, instead of using information on actual Al
patent counts (from year t) to form portfolios, we use information available on R&D stock and
Al exposure. Since R&D stock is lagged by two years relative to Al production, it is measured in
calendar year t-2. Al exposure is fixed before our sample period.

We sort firms into three quasi-terciles (containing an unequal number of firms) based on
(tax credit induced) R&D capital stock, the first component of our interaction instrument. These
resulting groups contain zero R&D stock ("low R&D", L), and two halves of non-zero R&D
stock ("medium R&D", M; and "high R&D", H) recalculated every year at the time of portfolio
formation. Independently, we also sort firms into terciles based on Al exposure (T1 through T3),
the second component of our interaction instrument, at the industry level. However, since "Al
exposure™ comprises the respective Al exposures of the firm and its customers, we need to
combine them so that we can sort on a single exposure measure. We do so by taking their first
principal component and using it as our measure of Al exposure in our baseline returns analyses.
Our portfolios of interest are those at the intersection of the double sorts on R&D stock and Al
exposure.

[Insert Table 5 about here]

Table 5 presents the results of portfolio return regressions implemented in a quasi-
reduced form setting. The Fama and French (2015) five-factor model is again the baseline, but
the results are robust to alternatives (Section 6.4). Our interest is in the spread of the spread, and

we interpret the results for our baseline size neutral portfolios (Panel C) as follows. We consider
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R&D stock moving from low to high together with Al exposure moving from T1 to T3. The
results for our baseline size neutral portfolios (Panel C) show that these changes result in higher
returns of, very roughly, 50 basis points per month.

We can also infer the Al patent counts corresponding to this return spread by using the
results of Table 3. The coefficient estimate on the interaction instrument is approximately 0.06
(Table 3). Let us consider the same increases in R&D stock (low to high, equal to roughly 5 units
of In(1+R&D stock)) and Al exposure (T1 to T3, equal to about 2 standard deviations) as above.
Therefore, the increase in Al patent counts corresponding to a 50 bps/month increase in returns
(Table 5 Panel C) is roughly 0.6 units of In(0.1+Al patent counts), or a 60% increase relative to
the mean (=0.06x5x2).2* We are careful to interpret these results suggestively, and we are not
comparing them directly to the returns results for Al patent counts (Table 4). However, these
results do suggest that innovation capacity and Al exposure, both of which positively affect Al
production (Table 3), result in higher risk-adjusted returns.

Once again, we also examine the factor loadings for our hedge portfolios. In Table 5, the
only consistent factor loading is growth (rather than value), and somewhat consistently weak
profitability (rather than robust). This is, again, the only extent of consistency with Table 4. In
Table 5, when significant, the market factor loading tends to be negative, and the size factor
positive. The investment factor is never significant.

6.4. Robustness Tests for Portfolio Returns Analyses

We directly eliminate a potentially confounding correlation between Al and non-Al

innovation in Fama-MacBeth regressions of monthly stock returns as well as panel regressions

throughout the paper. We do so by controlling for various measures of innovation outputs (e.g.,

# Simply as a reference point, moving from T1 to T3 in Table 4 equals about 5 units of In(0.1+Al patent counts).
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non-Al patent counts) and inputs (e.g., R&D spending). It is not possible to be as rigorous in
portfolio regressions.

We also examine the robustness of our results with respect to alternative factor models
proposed in the literature. As tabulated in Panel A through Panel E of both Internet Appendix
Table 2 (c.f. Table 4 Panel A) and Internet Appendix Table 3 (c.f. Table 5), we find that the Al
return spread remains economically and statistically significant in more demanding factor
models, such as the Fama and French (2015) five-factor model with momentum and the Hou,
Xue, and Zhang (2015) Q-factor model. In less demanding models, with fewer factors, the results
are weaker, which suggests that Al portfolios have less systematic risk as captured by canonical
risk factors. It would also be consistent with a firm's total risk being lower as a result of Al
innovation (which we also document, in Section 7.2).

Finally, using separately each of our two interaction instruments (i.e., based on the firm's
Al exposure versus that of its customers), we redo Table 5 and Internet Appendix Table 3 (both
double sorted by R&D stock and Al exposure). We find that our inferences are similar.

6.5. Fama-MacBeth Cross-Sectional Return Regressions
6.5.1. Fama-MacBeth OLS and IV in Year t+1

We examine the effect of potentially confounding variables on our estimates of risk-
adjusted returns following Al production. We run Fama-MacBeth cross-section returns
regressions using the same sample of firm-months that we use in our time-series returns
analyses. We implement Fama-MacBeth regressions corresponding to both our portfolio
regressions: sorted by actual Al patent counts (Table 4), and double sorted by (tax credit
induced) R&D capital stock and Al exposure (Table 5) but implemented here using instrumented

Al patent counts. Our explanatory variables of interest are actual and instrumented Al patent
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counts in OLS and IV regressions, respectively. We use the respective Al exposures of the firm
and its customers together as our baseline measure.

Our OLS and IV implementations of Fama-MacBeth differ as follows. In OLS Fama-
MacBeth, we run cross-sectional regressions every month of returns on actual Al patent counts.
In IV Fama-MacBeth, we first run cross-sectional regressions every month of actual Al patent
counts on our instrumental variables, the interaction of R&D capital stock and each Al exposure
measure. We also control for the components of our interaction instrument. We then run the
second stage regression for the corresponding month, regressing returns on instrumented Al
patent counts. The rest of the Fama-MacBeth procedure is the same for the OLS and IV
implementations.

Our battery of control variables includes non-Al patent counts and R&D spending. We
also include our innovation dummy variable. We control for variables commonly used in the
literature as well as our IV regressions: market capitalization, market-to-book of equity,
momentum, short-term reversal, return on assets, capex-to-total assets, stock price, and firm age.
As an alternative to unscaled non-Al patent counts and R&D spending, we also include these
variables scaled by total assets. Finally, we include fixed effects for industries using the Fama
and French 48 industry classification.

[Insert Table 6 about here]

Table 6 shows that, in our panel regressions, actual Al patent counts (OLS) are not

consistently significant (Panel A). By contrast, instrumented Al patent counts (IV) are

economically and statistically significant (Panel B).?® For a typical 19% increase in Al patent

% In the first stage of the IV Fama-MacBeth regressions (not tabulated), for a one standard deviation increase in
each of R&D stock and Al exposure, Al patent counts increase by 22% (=2.3x(0.029x1+0.068x1)) relative to its
mean). This compares to a 15% increase in Table 3 Panel A Column 3.
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counts relative to its mean, returns increase by roughly 8 basis points per month.?® As before, this
estimated magnitude can be viewed alternatively as the reinforcing effect of Al exposure on a
given change in R&D stock, and vice versa. The results are similar if we use each of our two
interaction instruments separately (Internet Appendix Table 4).

Recognizing that the persistence of Al production within firms may be correlated with
future returns, we additionally control for the mean monthly return during the previous 60
months. This control variable serves as an estimate of the firm's expected future return during the
following month. Once again, our results are similar.
6.5.2. Fama-MacBeth 1V in Year t+2 to Year t+5

We also examine the duration of the effect of instrumented Al patent counts on returns.
We use the same IV implementation of Fama-MacBeth as before. However, to ensure that we do
not attribute future returns to future Al patent grants, we additionally control for the potentially
confounding future Al patent grants (unscaled or variously scaled), e.g., during year t+1 for
returns in year t+2, ... , during year t+1 to year t+4 for returns in year t+5. We also control for Al
patent stock during year t-10 to year t-1.

Table 6 Panel C shows that returns are statistically significant until and including year
t+3. For a typical increase in Al patent counts relative to its mean, returns increase by roughly 5-
6 basis points per month in year t+2, and then by 7-11 bps in year t+3. For Al patent counts, our
baseline measure, returns are, respectively, 8, 6, and 7 basis points per month in year t+1 to year
t+3, and thus about 7 bps/month over three years. Beyond that, however, the results become

unreliable in terms of both economic and statistical significance.

% For the IV Fama-MacBeth regressions, we calculate the typical variation in Al production induced by our
interaction instrument analogously to our calculations for Table 3 Panel A Column 3 in Section 5. We fix the
logarithm of R&D stock at its mean of roughly 2, and we increase Al exposure by its standard deviation, for both the
firm and its customers. This increases Al patent counts by roughly 19% (=2x(0.029x1+0.068x1)) relative to its
mean.
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6.6. Comparison of Magnitudes of Panel Returns and Portfolio Returns

Finally, we compare the magnitudes of the returns estimated in the panel regressions in
Table 6 and the corresponding portfolio regressions in Table 5. The calculations above for Table
6, which use a one standard deviation increase in each of R&D stock and Al exposure, are unlike
those in Table 5. In the latter, R&D stock increases from low to high, and Al exposure increases
from T1 to T3. These changes in Table 5, converted to their equivalent magnitudes in Table 6,
are roughly equal to 5 and 2 units of our R&D stock and Al exposure variables, respectively.
Their effect is roughly a doubling of Al patent counts (=5x(0.029x2+0.068x2)) in the first stage
IV. Therefore, in the second stage IV (Table 6 Panel B Column 1), returns increase by roughly
42 basis points per month (=0.433x0.97). This is similar to the risk-adjusted returns in Table 5,
even without remarking on the battery of control variables included in Table 6.

7. The Effect of Al Production on the Key Drivers of Firm Value

We argue that Al technology provides the firm with better information acquisition,
forecasting, monitoring, decision making, execution, and responsiveness to changing business
conditions. Consequently, producing Al innovation can increase firm value through both higher
cash flow levels and lower cash flow risk. In the following empirical analysis, we use various
measures of profitability and risk, and we regress them on instrumented Al patent counts. The
second stage of our instrumental variable regressions is based on Equation 2. We address
potential threats to identification, for both our profitability and risk analyses, in Section 7.3, and
tabulate the results in Internet Appendix Table 5 and Internet Appendix Table 6, respectively.
We summarize our collective inferences in Section 7.4. We conclude with analyses of the time-

varying effects of Al production and other clarifications.
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7.1. The Effect of Al Production on Cash Flow Levels
[Insert Table 7 about here]

We measure profitability using return on assets. We find some evidence that Al
production increases cash flow levels but only transitorily. Table 7 Panel A shows that a 10%
increase in Al patent counts relative to its mean (i.e., a typical increase) increases return on
assets by 0.7 percentage points, which corresponds to roughly 2.5% of the dependent variable's
standard deviation. However, this effect in year t+1 decreases each successive year (roughly
halving annually), and becomes insignificant by year t+2.

By contrast, using endogenous (uninstrumented) Al patent counts, we find no significant
effect of Al production on the cash flow levels or cash flow risk. Indeed, we redo all IV
regressions implemented as OLS regressions, and tabulate the results in Internet Appendix Table
7 through Internet Appendix Table 12 (corresponding to Table 7 through Table 13, respectively).
In contrast to our IV estimates, our OLS estimates are generally much less significant,
economically and statistically.

Additionally, the Hansen J-test in Table 7 Panel A indicates the estimated effects of Al
patent counts are not significantly different using each instrument separately except in year t+3.
We also redo all IV regressions implemented using each instrument separately, and again
tabulate the results in Internet Appendix Table 7 through Internet Appendix Table 12. Internet
Appendix Table 7 shows that our IV estimates in year t+3 are not driven by the firm but rather its
customers.

For a variety of natural reasons, experience with Al production in the past may facilitate
Al production in the future. For instance, large fixed production costs may lower the cost to

firms of subsequent innovation activities. Alternatively, corporate knowledge gained from
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already having commercialized existing innovations may increase the efficiency of bringing new
innovations to market. We therefore explore the moderating role of experience on Al production.
We measure Al experience using the firm's past Al patent stock. Mindful of the statistical
limitations of cross-sectional contrast analyses, we use the predicted values from the regression
of Table 3 Panel A Column 3 for instrumented Al patent counts. Its interaction with past Al
patent stock is our variable of interest. We interpret contrast results as providing suggestive
evidence.

Table 7 Panel B shows that experience by itself does not have a significant effect. We
further divide our experienced sample into low and high halves based on the median of Al patent
stock counts as well as the patent stock ratio of Al patents to total patents. Table 7 shows, in
Panel C and Panel D, that high experience does significantly further increase the effect of Al
production on profitability, particularly when the firm's experience is measured not by Al patent
grants by themselves but rather relative to non-Al patent grants (Panel D). The evidence suggests
that some of the productivity potential of Al technology is being realized during our sample
period, but only for firms with more experience producing Al innovation.

7.2. The Effect of AI Production on Cash Flow Risk
[Insert Table 8 about here]

We first measure risk using the volatility of quarterly return on assets. Our findings
suggest that Al production decreases cash flow risk. Table 8 Panel A shows that a 10% increase
in Al patent counts relative to its mean decreases the volatility of return on assets by 7% relative
to its mean. We also measure risk using the volatility of daily stock returns, and we find a
confirmatory reduction of 2% relative to its mean. Similarly across both measures, the increase

in Al patent counts corresponds to roughly 3%-5% of the respective dependent variable's
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standard deviation. This effect in year t+1 decreases in year t+2, more so for return on assets than
for stock volatility, but it remains highly economically and statistically significant. Indeed, we
verify that the results are similar beyond year t+3 (not tabulated).

We again also explore the moderating role of past experience with Al production
facilitating future Al production (following the same procedure as in Section 7.1). We find that
experience by itself does significantly further decrease the effect of Al production on risk,
similarly from year t+1 to year t+3. However, high experience does not have a significantly
different effect from low experience.

We further examine the decrease in the total volatility of stock returns from Table 8,
decomposing it into its systematic and idiosyncratic components. As we previously argued in
Section 1, Al technology can decrease firm risk, for instance, by increasing internal control and
external responsiveness. Such risk dampening effects of Al may materialize in a firm's response
to the idiosyncratic or systematic shocks that it experiences. At the same time, as a general
purpose technology, Al can create commonalities across firms in responding to business
challenges, potentially increasing a firm's systematic risk. We explore which effect of Al
dominates for systematic risk, and also the effect of Al on idiosyncratic risk, using the fitted and
residual values from time-series returns regressions. We again use the Fama and French (2015)
five-factor model as our baseline, as in Table 4 and Table 5.

[Insert Table 9 about here]

Table 9 shows that the permanent decrease in total stock return volatility is a consequence
of both systematic and idiosyncratic risk decreasing permanently (Panel A and Panel B,
respectively). A 10% increase in Al patent counts relative to its mean decreases systematic and

idiosyncratic return volatilities by roughly 3% and 1.5%, respectively. The results are very
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similar if we replace our baseline model with the CAPM or our alternative factor models, as in
Internet Appendix Table 2 and Internet Appendix Table 3.

Since the CAPM is characterized by a single source of systematic risk, we can
parsimoniously quantify the decrease in market risk caused by Al production. We find that a
10% increase in Al patent counts relative to its mean decreases the CAPM beta by about 0.035
units (Panel C), or by roughly 4% of the mean of beta and 5% of its standard deviation. Overall,
Al production appears to decreases risk, for cash flow as well as stock returns, and in the case of
the latter, for both the systematic and idiosyncratic components of risk.

7.3. Potential Threats to ldentification

Our identifying assumption, for the production of Al innovation, is that firms respond
differently to random shocks to their innovation capacity because they have different Al
exposures measured at the industry level. An important advantage of using time-invariant
industry-level Al exposure, as we do, is that it minimizes the possibility of firms choosing their
(firm-level) Al exposure endogenously with firm outcomes. However, it is possible that firms
respond differently because of some differences across industries other than Al exposure, and
these differences are correlated with Al exposure. We now address this possibility with
specifications aimed at eliminating these omitted factors. However, the aggressiveness of these
specifications also tends to eliminate much of the variation in our instrument.

7.3.1. Arbitrary Confounds

We begin by redoing Table 7 (profitability) and Table 8 (risk) adding industry-state fixed
effects to capture the differential effect of R&D stock across industries that is specific to
particular states within each industry. This eliminates, for instance, variation in R&D tax credits

that apply differently to firms in different industries in different states — along with different
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government policies, economic conditions, etc. that are specific to each industry-state pair. The
Panel A results, in Internet Appendix Table 5 and Internet Appendix Table 6, are similar to our
baseline results. This is the case even if we calculate R&D stock only using the firm's
headquarters location and ignore all other R&D hubs of the firm (not tabulated).

Next, we directly address the possibility that industry Al exposure, and hence the
differential effect of R&D stock across industries, is potentially confounded with other
differences across industries, by interacting industry fixed effects with R&D stock. Fixed effects
for each value of R&D stock within each SIC3 industry would completely absorb all of the
variation in our instrument. Instead, we add SIC3 industry times R&D stock quartile fixed
effects, which absorb (incrementally to our baseline fixed effects) much of the differential effect
of R&D stock across different industries. Alternatively, we add SIC2 industry times R&D stock
decile fixed effects, which mechanically absorb less of the variation in our instrument across
industries but more of its variation across R&D stock. In Panel B and Panel C of the two
appendix tables, the profitability results become insignificant, but the risk results are similar.
7.3.2. Automation and General Technology Confounds

We then examine two specific omitted factors that may be potentially confounded with
our Al exposure measure at the industry level: automation and general technology. Rather than
only capturing Al exposure, our measure may also be capturing a firm's exposure to automation,
or the general characteristic that the firm's operations are in the technology industry. It is
noteworthy that Al technology is indeed a type of automation technology (i.e., of non-routine
tasks). However, our Al exposure measure could capture exposure to both "Al automation™ and
"non-Al automation” (e.g., if all the corresponding non-routine and routine tasks, respectively,

are not mutually exclusive).
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We measure exposure to automation of routine tasks, using data from Zhang (2019), as
the share of wages paid to workers in routine task occupations (following Autor and Dorn
(2013)) averaged across the firms in each SIC3 industry in 1990 (i.e., at the same time as our Al
exposure measure). We classify firms as being in the technology industry using SIC3 industries
based on Loughran and Ritter (2004). We add to our baseline specifications each of these
measures interacted with R&D stock. Both measures also capture part of the nature of Al
technology (i.e., automation of labor produced by technology firms) with the same granularity as
Al exposure (i.e., SIC3 industry). Nevertheless, the results in Panel D and Panel E are similar to
our baseline results.

As an alternative robustness test for the automation confound, we consider the possibility
that Al innovation proxies for innovation in automation technologies. Specifically, we control for
automation patents using data from Mann and Plttmann (2023), which are available from the
beginning of our sample period until 2014. The results are similar to those in our baseline
specifications (not tabulated).

7.3.3. Al Adoption Confound

We also consider the possibility that our results reflect the overall effect of the firm both
producing and adopting Al technology. Specifically, our interaction instrument could not only
affect Al production but also Al adoption, thereby violating the exclusion restriction.
Conceptually, a firm's Al exposure should incentivize it to direct its innovation capacity to
produce its own Al technology internally, but the firm could also be thus incentivized to acquire
others' Al technology externally. Al scientists are an example of such a confounding factor: they

are more likely to be employed by the firm because the firm has greater innovation capacity and
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Al exposure (our interaction instrument), and they can potentially both produce more Al
innovation and facilitate the firm's adoption of Al technology.

We examine whether the production of Al innovation proxies for Al adoption by
controlling for Al adoption using data from Babina, Fedyk, He, and Hodson (2024a). Their Al
adoption measures are arguably the most comprehensive available. These measures comprise a
primary, resumes-based measure (from Cognism), and a secondary, job postings-based measure
(from Burning Glass). Data for both Al adoption measures are available until the end of our
sample period, but they are available beginning in 2005 for the primary measure and beginning
in 2007 for the secondary measure (but missing for 2008-2009).

We merge our sample with Babina et al.'s and keep only firms common to both samples:
about 6,000 and 4,000 firms, respectively, for their primary and secondary measures. For each
firm, we linearly interpolate between a value of zero in 1990 and Babina et al.'s actual value for
the firm's first year in their sample (and we also linearly interpolate between 2007 and 2010 for
their secondary measure). We choose an initial value of zero because, expectedly, Babina et al.'s
initial values are overwhelming zero (roughly 90% for their primary measure, and 60% for their
secondary measure, rising to 70% if we include minuscule values (less than 0.01%) of the Al
share of employees). Indeed, these figures are very similar to the values in the first year of
Babina et al.'s sample (2005 and 2007 for their primary and secondary measures, respectively).

We find that Babina et al.'s measures have correlations of approximately 0.3 with our Al
production measure (for both measures), which suggests that there is a meaningful distinction
between producers and adopters. As for our main corporate outcomes, Panel F shows that the
results are similar to our baseline results. We tabulate the results for the primary, resumes-based

measure of adoption, but we find similar results for the secondary, job postings-based measure.
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As for systematic risk, there is an opposite effect on CAPM beta between the production
of Al innovation and the adoption of Al technology. We find that Al production decreases beta
(Table 9), consistent with our argument that producing Al improves the reliability of the firm's
execution and its responsiveness to changing business conditions. By contrast, Babina, Fedyk,
He, and Hodson (2024b) find that Al adoption increases beta, which is consistent with their
arguments that adopting Al can increase the firm's fragility during bad economic conditions
(because of shared datasets, models, and technological infrastructure) even as it increases the
firm's growth opportunities during good economic conditions, increasing beta on both the
downside and upside.

7.3.4. Slow Moving Arbitrary Confounds

Finally, potential omitted factors that are correlated with the differential effect of R&D
stock across industries may have a slow moving component (e.g., high Al innovation firms may
have persistently high risk). To capture this component at the firm-year level, we add to our
baseline specifications lagged dependent variables, which will also capture this same slow
moving component of our instrument. It is worth noting that such specifications (with firm fixed
effects and lagged dependent variables) are not only demanding but are subject to a Nickell
(1981) bias that may seriously attenuate our estimates. Panel G in each of the two appendix
tables shows that once again the profitability results become insignificant, but the risk results are
similar to our baseline.

7.4. Collective Inferences from the Returns, Cash Flow Levels, and Cash Flow Risk Analyses

To summarize our main results, producing Al innovation causes large but transitory

positive abnormal future stock returns (for roughly three years), a small and transitory increase in

profits (for roughly one year), and a large and permanent decrease in risk. The transitory higher
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future returns suggest that the permanent decrease in risk is not immediately and completely
reflected in stock prices by investors.
7.5. Time-Varying Effects of AI Production

We consider the evolution, during the past three decades, of the effect of producing Al
innovation. The proliferation of Al technology might suggest that producing Al innovation in
recent years would be even more profitable and less risky for firms, and more efficiently priced
by investors. However, many economic forces can give rise to time trends. For instance, with the
significant and growing scale of Al innovation and its diffusion across industries, the returns to
Al innovation may decrease as it becomes increasingly competitive to make important
technological breakthroughs. At the same time, increasing scale may increase technological
agglomeration effects, allowing one firm's innovation activities to benefit from those of other
firms, thus increasing returns to Al innovation. Indeed, opposing trends such as these may
roughly balance each other out.

We therefore examine our stock returns, profitability, and risk results over time. We do
not find significant temporal differences in future stock returns during our sample period. This
suggests that investors, in spite of their increasing interest in Al in recent years, have not become
better at anticipating the firm value resulting from Al innovation. Similarly, profitability is not
significantly different over time. However, we do find a small incremental risk decreasing effect
of Al innovation during the second half of our sample period (not tabulated). This would be
consistent with technological agglomeration dominating technological competition over time,

decreasing firm risk more markedly as a result of Al innovation.
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7.6. Patent Quality

Mindful that patents are heterogeneous in terms of quality, we examine our results for
higher versus lower quality patents. It is well known that many patents are filed for innovations
produced in the normal course of the R&D process but are of low quality because their small
expected future value (e.g., from preserving their optionality) exceeds their relatively small
incremental filing costs. Filing low quality patents may also keep the inventors working for a
firm motivated, by fostering competition among inventors or improving individual career
prospects with innovations that are valuable to the individual inventor even if they are low value
to the firm. Many low quality patents are also filed because a critical mass of overlapping
intellectual property claims can provide a firm with protection against patent litigation.

We capture the quality of patents standardly, using their scientific and commercial value
(as in Section 3.1). We classify Al patents as high versus low quality based on their value
relative to the median value of all Al patents in the same year. We redo Table 6 (Fama-MacBeth
returns) Panel B, Table 7 (profitability) Panel A, and Table 8 (risk) Panel A, replacing (total) Al
patents with high quality Al patents and controlling for low quality Al patents. The results (not
tabulated) are roughly twice the magnitude for high quality Al patents, compared to our baseline
results for total Al patents, using the median to classify patents into high versus low quality, and
even larger if we use higher thresholds for classification. The results are also similar using
alternative scaling variables for Al patent counts. Only when using commercial value to capture
quality and only for stock returns, the magnitudes for high quality Al patents are not as large (but
still larger than for total Al patents), but this is consistent with estimating future returns for firms
that, by construction, have patents with higher initial returns. Overall, the evidence on higher

quality patents supports the firm value hypothesis of Al production.
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7.7. Novelty of AI Technology

Since Al technology is in the early stages of diffusion at the beginning of our sample
period, we examine whether our results are affected by the novelty of Al technology. Although
we find minimal time-varying effects of Al production (Section 7.5), we do find that Al patents
are several times more likely to be breakthrough innovations than non-Al patents (Figure 2). We
again use the measure and data of Kelly, Papanikolaou, Seru, and Taddy (2021), and we again
redo Table 6 Panel B, Table 7 Panel A, and Table 8 Panel A, controlling for breakthrough
patents. The results are similar to those in our baseline specifications (not tabulated).

8. Mechanisms

We investigate possible mechanisms underlying the effect of Al production on the value
of the producer firm: labor productivity, physical capital intensity, and bargaining power. These
mechanisms can directly improve the producer firm's operations (e.g., increase its labor
productivity), through its Al production, motivated by its own Al exposure, most naturally
decreasing costs (especially labor costs) but also increasing its sales. However, they can also
indirectly affect the producer firm, motivated by its customers' Al exposure. Specifically, if the
Al innovation motivated by customers' Al exposure allows the producer firm better satisfy
demand (e.g., improve measurement, detection, response, etc.), then this lowers the costs of the
producer firm's operations (e.g., increase labor output relative to input) and thus increases the
firm's profits (separately from any effect of Al on sales). In this way, the producer firm can
negotiate more lucrative business deals for itself, but it can also negotiate deals that are more
stable, and thus increase profitability or decrease risk. While we frame our exposition of the

mechanisms below in terms of the direct effect of producer firm's Al exposure on itself, for
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brevity, the abovementioned indirect effect of customers' Al exposure can also result in
analogous effects. We therefore consider both exposures here, as in all of our analyses.
8.1. Labor Productivity

As a labor enhancing technology, Al can increase the productivity of the producer firm's
operations by improving labor productivity. Al augments earlier automation technologies by
automating cognitive tasks that depend on human sensory and decision making abilities.
Therefore, even compared to earlier automation technologies, Al can significantly substitute or
complement jobs or even entire occupations.

[Insert Table 10 about here]

We first examine labor productivity, which we capture using profit per employee. Table
10 shows that profit per employee increases by roughly $7,500 as a result of a 10% increase in
Al patent counts relative to its mean. This corresponds to about 3% of the standard deviation of
profit per employee (which is roughly $250,000). However, this first year effect for labor
productivity, like for profitability (net income to total assets), becomes insignificant by the
second year (not tabulated). Therefore, the labor productivity effect is transitory.

We also examine the producer firm's level of employment. However, the effect of Al
production here is unclear. If Al is, on balance, a substitute for labor, then employment will
decrease. However, if Al complements labor on balance, making existing workers more
productive as they work with Al technology, or allowing the firm to hire workers who produce
more than they cost thanks to Al technology, then employment will increase.

We find no effect of Al production on the level of employment based on our results in

Table 10. Nor do we find any effect on the overall scale of the producer firm, as measured by
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total assets. While we have no evidence of Al production hurting employment to date, neither do
we find that it helps.
8.2. Capital Intensity

Al technology allows firms to improve the automation and planning of their operations.
For instance, it can reduce the need to maintain spare production capacity (not only labor but
also capital) and inventory for episodes of surging customer demand. In so doing, Al enables
firms to reduce their investment in and maintenance of capital required for development as well
as production.

[Insert Table 11 about here]

We therefore examine the capital intensity of Al producer firms along various
dimensions. Table 11 shows that firms generally become less capital intensive as a result of Al
production. A 10% increase in Al patent counts decreases property, plant, and equipment by
roughly 2.5% relative to its mean. Additionally, and consistent with Al improving planning, we
find that inventory decreases by about 3.5% relative to its mean. These magnitudes correspond to
about 2% of the respective dependent variable's standard deviation.

Additionally, we examine the investment of firms and find that it decreases as a result of
Al production. Table 11 shows that capex and R&D spending, decrease by roughly 4% and 7%
relative to their means, respectively, corresponding to about 3% of their respective standard
deviations. By contrast, acquisitions expenditures increase by about 3.5%, corresponding to
roughly 2% of its standard deviation. This suggests that Al technology allows firms to shift some
of their investment focus from inside the firm to outside of it. The results for capital intensity are
permanent, being generally similar for five years in economic and statistical significance (not

tabulated).
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8.3. Producer Firm Bargaining Power

In the course of producing Al innovation that can subsequently be commercialized, Al
producer firms can also improve their bargaining power vis-a-vis their business counterparties.
This can not only increase the spread between the firm's production outputs and inputs (i.e.,
increase profitability) but also their stability (i.e., decrease risk). Let us elaborate, starting with
customers. Products that embed the producer firm's Al technology, or services integrating its Al
technology with its customers' operations, can make it costly for customers to shift their business
away from the Al producer firm. Similarly, as a safer customer for its suppliers, the Al producer
itself may be able to command more reliable, or otherwise better or cheaper, products from its
suppliers. Turning to employees, the threat of substitution from Al increases the firm's
bargaining power relative to labor, which can allow the firm to lower its labor costs and also to
increase its operating flexibility. The latter is particularly valuable in adverse business conditions
during which flexibility may be much improved by actually substituting Al for labor. Overall, an
Al producer can be more profitable for doing business with, and more costly to switch away
from, for its counterparties. At the same time, the greater stability of the Al producer is
beneficial both for the firm itself and each of its counterparties.

[Insert Table 12 about here]

In light of the difficulty of measuring bargaining power directly (even more so for
business stability than lucrativity), we instead use measures of the stability of the firm's output
and input relationships. We find that both increase as a result of Al production. Starting with
outputs, Table 12 shows that the volatility of quarterly sales decreases by about 3.5% relative to
its mean as a result of a 10% increase in Al patent counts. Also evidencing a more stable

relationship between the firm and its customers, product differentiation (vis-a-vis product market
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competitors) also increases. Specifically, the Hoberg and Phillips (2016) similarity score,
converted to a differentiation, increases by about 5 percentage points.

Proceeding to inputs, Table 12 shows that the volatility of total costs of production
decreases by about 3.5% relative to its mean as a result of a 10% increase in Al patent counts. If
we break total costs down into their constituent SG&A and COGS, we find that their volatilities
decrease by roughly 2.5% and 3%, respectively. Consistently across all of the regressions in
Table 12, the estimated magnitudes correspond to about 2-3% of the respective dependent
variable's standard deviation. The results for bargaining power are also permanent, with similar
statistical significance for five years and somewhat smaller economic magnitude (not tabulated).

9. Financing Implications of Al Production

Having documented that Al producer firms have higher cash flows and lower cash flow
risk, we turn to the financing implications of Al production. As a consequence of the effect of Al
production on both of these key value drivers, we would expect Al producers to choose more
aggressive financial structures. For instance, firms would be incentivized to shield from taxation
their higher profits by increasing their leverage. Firms lower financial distress costs resulting
from lower risk would similarly motivate them to increase their leverage.

[Insert Table 13 about here]

Table 13 shows that subsequent to a 10% increase in Al patent counts, Al producers
increase their leverage by about 3% relative to its mean. Similarly, and also consistent with
lower precautionary motives for holding cash, the same variation in Al patent counts lowers cash
holdings by about 2.5%. We further investigate the components of the change in leverage to
better understand how firms react. We find that net debt issuance increases by roughly 2

percentage points, while equity issuance decreases by roughly 0.8 p.p., even as share repurchases
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remain unchanged. These financing results are also similar for several years (not tabulated).
Overall, Al production appears to increase financial structure aggressiveness.
10. Conclusion

We document that Al innovation is a prominent form of innovation with widespread
applications across different product markets and technology fields. Publicly traded firms
dominate the Al production in the economy, and an increasingly high share of innovative
publicly traded firms produce Al innovation. We argue that Al production increases firm value
for the producer firm, by increasing cash flow levels and decreasing cash flow risk.

In our causal examination of the implications of Al production, we use an instrumental
variable that exploits the interaction between the producer firm's plausibly exogenous innovation
capacity and Al exposure driven incentives to produce Al innovation. We argue and find that
firms produce Al innovation motivated by both their own Al exposure as well as that of their
customers. Moreover, Al production causes transitorily higher profitability and permanently
lower risk. Furthermore, Al producers have persistently higher future abnormal stock returns for
roughly three years, which suggests that investors underestimate the firm value increasing effects
of Al innovation. Additionally, we document mechanisms through which Al production affects
firm value, including decreased physical capital intensity and increased bargaining power.

Taken together, our findings help inform corporate managers, capital providers, and
policy makers who increasingly need to evaluate investment opportunities to develop and deploy
Al technology. Producing Al innovation has been value enhancing for producer firms across

several operational dimensions, during most of the past three decades.
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Appendix 1
Details of the Classification of Patents as Al versus Non-Al

We describe here the key details of Giczy, Pairolero, and Toole (2022)'s machine
learning approach for classifying patents as Al versus non-Al. As a starting point, Al is broken
down into eight Al component technologies, and the universe of patent documents is evaluated
for Al content pertaining to each of the eight components. These components are defined so as to
be implementable in patent-level analysis and are motivated by the National Institute of
Standards and Technology's definition of Al technology: "software and/or hardware that can
learn to solve complex problems, make predictions or undertake tasks that require human-like
sensing (such as vision, speech, and touch), perception, cognition, planning, learning,
communication, or physical action” (NIST (2019)).

The eight Al component technologies are knowledge processing, speech recognition, Al
hardware, evolutionary computation, natural language processing, machine learning, computer
vision, and planning/control. These components are not mutually exclusive. For instance, an
invention in any one of the components is likely to also exploit machine learning models. The
identification algorithm then focuses on each of these eight Al component technologies
separately, until, for each component, all patents are assigned a predicted probability of being Al.

To train a machine learning model to identify a patent as Al or non-Al, it is necessary to
have one set of patents that are "surely Al" and another set that are "surely non-Al". The set of
"surely AI" patents is identified by intersecting four patent classification systems: CPC, IPC,
USPC, and Derwent World Patent Index. Each of these systems has its own set of patent classes
that allow categorization of every patent as Al or non-Al according to each of the

aforementioned eight Al component technologies. Giczy et al. deem a patent to be "surely Al" if
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all four patent classification systems agree that the patent belongs to the specific Al component
technology under consideration.?®

Having thus identified the training set of "surely Al" patents, the next step is to identify
the set of "surely non-Al" patents. This begins by excluding the set of "surely Al" patents.
However, some of the patents that remain may be related to Al. These patents are identified for
exclusion in two independent procedures as follows. In the first procedure, patents are excluded
if they share a patent family with any patent in the set of "surely Al" patents, and their backward
and forward citations are also excluded.?® This step is repeated a second time, but this time the
basis of exclusion is sharing a patent family with any patent excluded in the first step (as
opposed to the set of "surely Al" patents). In the second procedure, patents are excluded if they
belong to a CPC patent class that has an abnormally high share of "surely AI" patents
(specifically, if the class' share of "surely Al" patents is more than 50 times the class' share of the
universe of patents). The final step in creating the training set of "surely non-Al" patents is to
randomly select 15,000 of the patents that remain after the foregoing exclusions.

A machine learning model is then trained on the abstract, claims, and citations of the
"surely AI" and "surely non-Al" patents. After training, the model subsequently evaluates all
patent documents (i.e., not just those of "surely Al" and "surely non-Al" training sets) for their
Al content. All patents are thus assigned a predicted probability of containing a particular Al
component technology. Finally, if any of the predicted probabilities exceed 0.5 for any of the

eight Al component technologies, the patent is classified as an Al patent.

%8 For example, to identify the "surely Al" set of patents for computer vision, the following is a list of the patent
classes that are intersected from the four patent classification systems. From CPC/IPC: GO6K9 (recognition of
characters or patterns), GO6T3 (image transformation), GO6T5 (image enhancement/ restoration), and GO6T7 (image
analysis). From USPC: 382 (image analysis). From Derwent: TO1-J10B (Image Processing), T04-D (Character and
signal pattern recognition), and T01-J16 (artificial intelligence).

2 A patent family is a group of patent applications and/or granted patents that share a common applicant/owner and
share a similar inventive concept.
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Appendix 2
Details of the Construction of Occupational Al Exposure Scores

The Al exposure of an occupation is the extent to which Al can be used to substitute or
complement labor in that occupation, and the measure that we use reflects this agnosticism about
the effect of Al on labor. Felten, Raj, and Seamans (2021) measure occupational Al exposure
starting with estimating the Al exposure of all 52 "workspace abilities” in the Department of
Labor O*NET database. These abilities simply describe the skills required to perform the tasks
involved in various occupations. O*NET scores each ability, within each occupation, on its
relevance and importance (e.g., surgeons receive high scores for arm-hand steadiness and
deductive reasoning).

Felten, Raj, and Seamans (2021) conduct a crowd sourced survey via Amazon's mTurk
asking respondents if a specified O*NET ability "is related to or can use Al" in 10 "Al
applications” defined by the Electronic Frontier Foundation.*® Survey responses (zero-one / no-
yes) are averaged within each of 520 ability-application pairs (52x10). Then, within each of 52
O*NET workspace abilities, the survey average Al application scores are summed up, resulting
in an Al application score for each workspace ability. Finally, the total Al application scores for
O*NET workspace abilities are calculated as a weighted average across each O*NET
occupation. The weights used are the initially mentioned O*NET scores for the relevance and
importance of each workspace ability specific to the occupation. The final occupational scores

are standardized (mean zero, standard deviation one).

% This focus is chosen for the sake of concreteness and precision of survey responses. The EFF is a digital rights
and privacy non-profit that collects statistics about the progress of Al across its applications. The 10 selected Al
applications are those for which the EFF has recorded scientific activity since 2010. The applications comprise:
abstract strategy games, real-time video games, image recognition, visual question answering, image generation,
reading comprehension, language modeling, translation, speech recognition, and instrumental track recognition.
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Table 1
Industry Ranking Based on Al Production

This table shows the ranking of industries based on their Al production. The sample is all firms in the baseline sample restricted to industries with at least 10
firms per year every year during the sample period. The number of firms in an industry is the annual average number of firms. The number of Al patents is the
annual average of the total number of Al patents granted to firms in the industry. The three most Al innovative firms in an industry are the three firms with the
highest number of Al patents.

. Excl. three most Al
All firms : L
innovative firms
Rank: Number Rank: Rank: Rank:
Industry Number Mean Al | Industry  Mean Al
SIC3  Industry name . of Al

total Al of firms patents total Al patents
patents - .

patents per firm patents per firm
1 737  Computer programming, data processing, and other computer related 312.5 400.14 6 1 3
2 367  Electronic components and accessories 139.9 226.57 3 3 2
3 357  Computer and office equipment 113.9 222.71 2 2 1
4 382  Laboratory apparatus and analytical, optical, measuring, and control 98.4 100.61 8 4 5
5 366  Communications equipment 92,5 87.04 7 5 6
6 384  Surgical, medical, and dental instruments and supplies 139.1 74.39 13 6 8
7 481  Telephone communications 45.8 58.25 4 7 7
8 372 Aircraft and parts 20.5 52.36 1 9 4
9 371  Motor vehicles and motor vehicle equipment 45.5 45.89 9 10 10
10 283  Drugs 2714 38.89 23 8 14
11 291  Petroleum refining 19.5 24.93 5 11 9
12 353  Construction, mining, and materials handling machinery and equipment 245 20.50 10 19 18
13 355  Special industry machinery, except metalworking machinery 36.1 18.89 12 12 11
14 362  Electrical industrial apparatus 18.8 15.36 11 18 17
15 596  Non-store retailers 28.3 11.50 14 20 20
16 138  Oil and gas field services 304 11.36 15 22 21
17 873  Research, development, and testing services 39.4 7.21 20 13 13
18 284 Sqap, deterger_ns, and cleaning preparations; perfumes, cosmetics, and other 226 6.39 16 31 27

toilet preparations

19 421  Trucking and courier services, except air 28.4 5.96 17 36 39
20 738  Miscellaneous business services 37.7 5.36 19 15 16
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21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

369
799
483
356
874
504
208
451
506
281
131
871
308
581
495
594
809
736
331
735
153
565

Miscellaneous electrical machinery, equipment, and supplies
Miscellaneous amusement and recreation services

Radio and television broadcasting stations

General industrial machinery and equipment
Management and public relations services

Professional and commercial equipment and supplies
Beverages

Air transportation, scheduled, and air courier services
Electrical goods

Industrial inorganic chemicals

Crude petroleum and natural gas

Engineering, architectural, and surveying services
Miscellaneous plastics products

Eating and drinking places

Sanitary services

Miscellaneous shopping goods stores

Miscellaneous health and allied services, not elsewhere classified
Personnel supply services

Steel works, blast furnaces, and rolling and finishing mills
Miscellaneous equipment rental and leasing

Operative builders

Family clothing stores

20.8
295
25.6
39.7
25.1
30.8
18.9
20.0
22.6
16.5
98.5
18.9
29.3
69.0
24.9
21.9
18.1
26.8
27.3
15.8
23.0
155

5.21
4.68
4.57
3.93
2.68
1.68
1.57
1.57
1.57
1.50
1.39
0.75
0.64
0.64
0.61
0.46
0.25
0.21
0.14
0.07
0.04
0.04

18
22
21
26
24
30
28
27
25
28
35
34
33
37
31
32
36
38
39
40
40
41

14
24
16
17
23
21
33
29
30
27
25
26
28
39
33
32
34
40
41
38
37
39

12
24
15
19
22
23
34
29
30
29
32
31
25
33
40
26
34
42
38
35
33
38
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Table 2
Descriptive Statistics

This table presents descriptive statistics for the main variables used in this paper. Variables are defined in Appendix
Table 2.

Standard 25th . 75th
Mean s . Median .
deviation  percentile percentile
Independent variables
- Al patent counts 0.66 3.46 0.00 0.00 0.00
- Non-Al patent counts 6.5 26.8 0.0 0.0 1.0
- R&D stock [tax credit induced] ($ M) 127.3 491.0 0.0 1.9 40.2
- Firm's Al exposure 1.23 0.47 0.87 121 1.54
- Customers' Al exposure 1.14 0.36 0.85 1.14 1.37
- Total assets ($ M) 2,313 6,832 62 261 1,208
- Firm age (years) 15 15 4 10 21
- Innovation dummy variable 0.33 0.47 0.00 0.00 1.00
Al patent counts with alternative scaling
- Al patent counts / Total assets (per $ B) 0.62 3.12 0.00 0.00 0.00
- Al patent counts / Total patent stock (%) 1.09 5.47 0.00 0.00 0.00
- Al patent counts / Total patent counts (%) 3.60 15.33 0.00 0.00 0.00
- Al patent counts / R&D stock (per $ B) 1.43 6.64 0.00 0.00 0.00
Variables used in stock returns analysis
- Monthly stock return (%) 0.66 16.35 -7.81 -0.22 7.73
- Market capitalization ($ M) 2,319 7,484 46 219 1,082
- Market-to-book of equity 2.7 4.0 0.8 14 2.8
- Momentum (%) 9.7 60.6 -26.8 0.6 30.8
- Short-term reversal (%) 0.69 16.29 -7.84 -0.24 7.74
- Stock price (3$) 20.0 22.9 4.3 12.0 27.3
Dependent variables: Profitability
- Return on assets -0.057 0.279 -0.084 0.026 0.079
Dependent variables: Risk
- Volatility of return on assets 0.032 0.054 0.006 0.013 0.033
- Volatility of stock returns (%) 4.18 2.70 2.31 3.43 5.17
Dependent variables: Labor productivity
- Profit per employee ($ M per employee) -0.050 0.247 -0.023 0.005 0.022
- Employment / Total assets 54 6.6 17 34 6.4
(employees per $ M)

- Total assets ($ M) 2,428 7,102 63 280 1,301
Dependent variables: Capital intensity
- PP&E / Total assets 0.26 0.22 0.08 0.18 0.37
- Inventory / Total assets 0.14 0.16 0.01 0.09 0.22
- Capex / Total assets 0.061 0.077 0.016 0.036 0.073
- R&D / Total assets 0.067 0.131 0.000 0.004 0.077
- Acquisitions / Total assets 0.030 0.093 0.000 0.000 0.007
Dependent variables: Bargaining power
- Volatility of (Sales / Total assets) 0.049 0.064 0.012 0.027 0.058
- Product differentiation (%) 96.9 2.2 96.3 97.5 98.3
- Volatility of (Total costs / Total assets) 0.043 0.059 0.010 0.023 0.050
- Volatility of (SG&A / Total assets) 0.012 0.020 0.002 0.005 0.013
- Volatility of (COGS / Total assets) 0.034 0.047 0.007 0.017 0.040
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Dependent variables: Financial policies
- Leverage

0.23 0.23 0.02 0.18 0.35
- Cash holdings / Total assets 0.20 0.23 0.03 0.10 0.29
- Equity issuance / Total assets 0.085 0.270 0.000 0.004 0.022
- Share repurchases / Total assets 0.016 0.040 0.000 0.000 0.008
- Net debt issuance / Total assets 0.026 0.142 -0.023 0.000 0.030
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Table 3
First Stage of IV Regressions

This table shows the results of regressions of Al production on the interaction between the producer firm's R&D
stock and its own Al exposure or the Al exposure of its customers. Column 3 corresponds to the first stage of the IV
regressions. The sample period spans 1990-2017 in terms of year t. Al patent counts are measured in year t. They are
instrumented with R&D stock measured at year t-2 and Al exposure fixed before the start of the sample period.
Scaling variables are measured in, or ending in, year t. Patent counts are measured in year t. Total patent stock and
R&D stock are measured during the previous 10 years. The sample and specifications are described in the text.
Variables are defined in Appendix Table 2. ***, ** and * indicate statistical significance at the 1%, 5%, and 10%
levels, respectively.

Panel A: Dependent Variable Is Al Patent Counts
In(0.1+Al patent counts)

1) ) @)
In(1+R&D stock) [tax credit induced] 0.053*** 0.024*
x Firm's Al exposure (6.53) (1.92)
In(1+R&D stock) [tax credit induced] 0.058*** 0.040***
x Customers' Al exposure (6.69) (3.05)
In(1+R&D stock) [tax credit induced] 0.037*** 0.038*** 0.038***
(2.61) (2.61) (2.62)
In(1+Non-Al patent counts) 0.383*** 0.384*** 0.383***
(12.58) (12.60) (12.60)
Innovation dummy variable 0.163** 0.163** 0.163**
(2.56) (2.57) (2.56)
In(Total assets) 0.051*** 0.051*** 0.051***
(6.30) (6.29) (6.32)
In(Firm age) -0.036*** -0.038*** -0.038***
(-3.87) (-4.13) (-4.12)
Fixed effects
State x Year? Yes Yes Yes
SIC3 industry? Yes Yes Yes
Firm? Yes Yes Yes
SIC2 industry x Year? Yes Yes Yes
Observations 92,277 92,277 92,277
Adjusted R? 0.702 0.702 0.702
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Panel B: Dependent Variable Is Al Patent Counts Scaled by Total Assets

In(0.01+Al patent counts / Total assets)

1) (2) 3)
In(1+R&D stock) [tax credit induced] 0.080*** 0.034*
x Firm's Al exposure (6.90) (1.94)
In(1+R&D stock) [tax credit induced] 0.089*** 0.063***
x Customers' Al exposure (7.04) (3.32)
Control variables and fixed effects? Yes Yes Yes
Observations 92,119 92,119 92,119
Adjusted R? 0.574 0.574 0.574

Panel C: Dependent Variable Is Al Patent Counts Scaled by Total Patent Stock

In(0.0001+Al patent counts / Total patent stock)

1) (2) 3)
In(1+R&D stock) [tax credit induced] 0.067*** 0.042**
x Firm's Al exposure (5.41) (2.35)
In(1+R&D stock) [tax credit induced] 0.066*** 0.034*
x Customers' Al exposure (4.79) 1.71)
Control variables and fixed effects? Yes Yes Yes
Observations 92,277 92,277 92,277
Adjusted R? 0.578 0.578 0.578

Panel D: Dependent Variable Is Al Patent Counts Scaled by Total Patent Counts

In(0.0001+Al patent counts / Total patent counts)

1) (2) 3)
In(1+R&D stock) [tax credit induced] 0.099*** 0.049*
x Firm's Al exposure (5.96) (1.80)
In(1+R&D stock) [tax credit induced] 0.106*** 0.069**
x Customers' Al exposure (5.82) (2.40)
Control variables and fixed effects? Yes Yes Yes
Observations 92,119 92,119 92,119
Adjusted R? 0.595 0.595 0.595

Panel E: Dependent Variable Is Al Patent Counts Scaled by R&D Stock

In(0.01+Al patent counts / R&D stock)

1) (2) 3)
In(1+R&D stock) [tax credit induced] 0.108*** 0.075***
x Firm's Al exposure (7.52) (2.95)
In(1+R&D stock) [tax credit induced] 0.102*** 0.045
x Customers' Al exposure (5.95) (1.59)
Control variables and fixed effects? Yes Yes Yes
Observations 88,647 88,647 88,647
Adjusted R? 0.604 0.604 0.604
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This table shows the risk-adjusted returns of portfolios sorted based on actual Al patent counts. The sample and specifications are described in the text. Returns
are measured from July 1991 to June 2019 (336 consecutive months). Firms are sorted into four quasi-quartiles: zero, low (Q2), medium (Q3), and high (Q4) Al
patents. The zero Al patents quartile is further sorted into two groups: zero innovation (Q0) and non-zero innovation (Q1). Returns are risk-adjusted using the
Fama and French (2015) five-factor model. t-statistics are calculated using Newey and West (1987) standard errors with twelve lags. ***, **, and * indicate

Table 4
Risk-Adjusted Returns of Portfolios Sorted by Actual Al Patent Counts

statistical significance at the 1%, 5%, and 10% levels, respectively.

Panel A: Alphas from Sorting by Al Patent Counts

Innovatn =0 Innovat'n >0

&AI=0  &AI=0 LE’(‘S’Z;” Me‘gg‘g)‘ Al H'(%h4f" Q-Q2  Q4-QL  Q4-Q0
(QO0) Q1)
Equally weighted 0.07 0.20 0.33** 0.52*** 0.52*** 0.19 0.32** 0.45***
(0.53) (1.53) (2.11) (3.14) (3.66) (1.46) (2.23) (3.35)
Value weighted -0.19** -0.09 -0.04 0.18 0.27** 0.32* 0.37** 0.46%**
(-2.41) (-1.18) (-0.41) (1.56) (2.15) (1.90) (2.21) (3.42)
Size neutral -0.17** -0.02 0.19* 0.25* 0.49** 0.31* 0.52** 0.66***
(-2.06) (-0.33) (1.95) (1.92) (2.39) (1.68) (2.54) (3.44)
Mean number of stocks 1,945 709 140 78 99
Panel B: Alphas from Sorting by Al Patent Counts Scaled by Total Assets
Innovatn =0 Innovat'n >0 . .
&AI=0 &AI=0 L?(‘S’Z;” Me‘z('?”;)‘ Al H'(%h4f" Q4-Q2 Q4-0Q1 Q4 - QO
(Q0) Q1)
Equally weighted 0.07 0.20 0.06 0.50*** 0.74%** 0.69*** 0.54%** 0.67***
(0.53) (1.53) (0.58) (3.19) (2.89) (2.77) (3.06) (3.01)
Value weighted -0.19** -0.09 -0.02 0.36** 0.79** 0.82** 0.89%** 0.98%**
(-2.41) (-1.18) (-0.32) (2.16) (2.54) (2.40) (2.68) (2.96)
Size neutral -0.17** -0.02 -0.14 0.41%** 0.68*** 0.82*** 0.71%** 0.85%**
(-2.06) (-0.34) (-0.91) (2.70) (2.73) (2.84) (3.02) (3.37)
Mean number of stocks 1,945 708 108 106 102
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Panel C: Alphas from Sorting by Al Patent Counts Scaled by Total Patent Stock

Innovatn =0 Innovat'n >0

& Al'=0 & Al'=0 L?(‘S’Z';*' Me‘ggg‘ Al H'(%h4f' Q4-0Q2 Q4-01 Q4-Q0
(Q0) (Q1)
Equally weighted 0.07 0.20 0.08 0.48** 0.73*** 0.64*** 0.53*** 0.66***
(0.53) (1.53) (0.87) (2.54) (3.52) (3.26) (3.29) (3.92)
Value weighted -0.19** -0.09 -0.05 0.24 0.53*** 0.57*** 0.62*** 0.71***
(-2.41) (-1.18) (-0.72) (1.55) (2.84) (2.97) (2.72) (3.61)
Size neutral -0.17** -0.02 0.16 0.30* 0.54*** 0.38 0.56*** 0.71***
(-2.06) (-0.33) (1.02) (1.80) (2.90) (1.49) (2.93) (4.27)
Mean number of stocks 1,945 709 108 107 102
Panel D: Alphas from Sorting by Al Patent Counts Scaled by Total Patent Counts
Innovatn =0 Innovat'n >0 . .
&AI=0  &AI=0 "?(‘3’2';*' Me‘ggg‘ Al H'(%h4f' Q4-Q2  Q4-Q1  Q4-QO
(Q0) (Q1)
Equally weighted 0.07 0.20 0.20* 0.42** 0.67*** 0.47*** 0.47*** 0.60%***
(0.53) (1.53) (1.92) (2.26) (3.31) (2.61) (2.93) (3.76)
Value weighted -0.19** -0.09 -0.01 0.18 0.53*** 0.54*** 0.62*** 0.72%**
(-2.41) (-1.18) (-0.18) (1.07) (2.71) (2.63) (2.68) (3.49)
Size neutral -0.17** -0.02 0.27* 0.23 0.56*** 0.29 0.59*** 0.73***
(-2.06) (-0.33) (1.91) (1.51) (2.82) (1.25) (2.87) (4.22)
Mean number of stocks 1,945 709 109 109 99
Panel E: Alphas from Sorting by Al Patent Counts Scaled by R&D Stock
Innovatn =0 Innovatn >0 . .
&AI=0  &AI=0 L?(‘S’Z;” Me‘z('?”;)‘ Al H'(%h4f" Q-Q2  Q4-QL  Q4-Q0
(Q0) (Q1)
Equally weighted 0.07 0.28** 0.28** 0.45%** 0.70*** 0.42** 0.41*** 0.63%**
(0.53) (1.97) (2.31) (3.11) (3.05) (2.29) (2.78) (3.29)
Value weighted -0.19** 0.05 0.04 0.30* 0.32 0.28 0.27 0.51**
(-2.41) (0.58) (0.57) (1.85) (1.64) (1.39) (1.15) (2.50)
Size neutral -0.17** 0.10 0.30** 0.36** 0.40** 0.10 0.30* 0.57***
(-2.06) (1.26) (2.25) (2.27) (2.50) (0.71) (1.88) (3.71)
Mean number of stocks 1,945 615 99 97 94
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Table 5

Risk-Adjusted Returns of Portfolios Double Sorted by R&D Stock and Al Exposure

This table shows the risk-adjusted returns of portfolios double sorted independently based on (tax credit induced)
R&D capital stock and Al exposure. The sample and specifications are described in the text. Returns are measured
from July 1991 through June 2019 (336 consecutive months). Firms are sorted into three quasi-terciles based on
R&D capital stock: zero R&D stock (“"low R&D", L), and two halves of non-zero R&D stock ("medium R&D", M;
and "high R&D", H). Independently, firms are sorted into terciles based on Al exposure at the industry level
measured as the first principal component of the respective Al exposures of the firm and its customers. Returns are
risk-adjusted using the Fama and French (2015) five-factor model. t-statistics are calculated using Newey and West
(1987) standard errors with twelve lags. ***, ** and * indicate statistical significance at the 1%, 5%, and 10%

levels, respectively.

Panel A: Alphas of Equally Weighted Portfolios

Exposure T1 Exposure T2 Exposure T3 Exposure
(low) (medium) (high) (T3-T1)
Low R&D stock (L) -0.23 -0.45** -0.07 0.15
(-1.57) (-2.57) (-0.62) (1.34)
Medium R&D stock (M) -0.08 -0.01 0.55** 0.63**
(-0.54) (-0.08) (2.42) (2.53)
High R&D stock (H) -0.25* 0.00 0.79%** 1.04***
(-1.79) (0.04) (4.05) (3.77)
R&D stock (H-L) -0.02 0.46** 0.87*** 0.89***
(-0.17) (2.37) (3.99) (3.71)
Panel B: Alphas of Value Weighted Portfolios
Exposure T1 Exposure T2 Exposure T3 Exposure
(low) (medium) (high) (T3-T1)
Low R&D stock (L) -0.37*** -0.26** -0.29*** 0.09
(-3.07) (-2.38) (-2.85) (0.55)
Medium R&D stock (M) -0.32 -0.27 0.20 0.52**
(-1.56) (-1.19) (1.57) (2.32)
High R&D stock (H) -0.20 -0.03 0.27%** 0.47%**
(-1.62) (-0.27) (3.13) (2.86)
R&D stock (H-L) 0.18* 0.23 0.56%** 0.38**
(1.69) (1.24) (4.04) (2.06)
Panel C: Alphas of Size Neutral Portfolios
Exposure T1 Exposure T2 Exposure T3 Exposure
(low) (medium) (high) (T3-T1)
Low R&D stock (L) -0.35*** -0.39*** -0.27*** 0.08
(-3.44) (-3.22) (-2.93) (0.71)
Medium R&D stock (M) -0.35* -0.30 0.27** 0.62***
(-1.83) (-1.36) (2.13) (2.93)
High R&D stock (H) -0.26** -0.07 0.44%*** 0.70***
(-2.01) (-0.63) (3.71) (3.52)
R&D stock (H-L) 0.09 0.32** 0.71%** 0.62***
(1.15) (1.98) (4.77) (3.26)
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Panel D: Mean Number of Stocks in Each Portfolio

Low R&D stock (L)
Medium R&D stock (M)
High R&D stock (H)

Exposure T1 Exposure T2 Exposure T3 Exposure
(low) (medium) (high) (T3-T1)
258 422 652
115 134 537
103 149 598
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Table 6
Fama-MacBeth Regressions of Stock Returns on Al Production

This table shows the results of Fama-MacBeth regressions of individual monthly stock returns on Al production.
The sample and specifications are described in the text. Returns are measured from July 1991 to June 2019 (336
consecutive months). The controls variables for non-Al patent counts and R&D spending are scaled by total assets,
and the small constants added before taking logarithms are suitably adjusted. The other control variables are market
capitalization, market-to-book of equity, momentum, short-term reversal, return on assets, capex-to-total assets,
stock price, and firm age. Variables are defined in Appendix Table 2. t-statistics are calculated using Newey and
West (1987) standard errors with twelve lags. The coefficient of determination, F-statistic for instrument, and p-
value of Hansen J-statistic are the time-series averages of the corresponding statistics across the cross-sectional
regressions. *** ** and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.
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Panel A: Actual Al Patent Counts (OLS)

Dependent variable is monthly stock return
Scaling variable for Al patent counts

Total patent ~ Total patent

None Total assets R&D stock
stock counts

Year t+1
In(0.1+Al patent counts) 0.002 0.026** 0.018* 0.013* 0.016

(0.13) (2.14) (1.72) (1.66) (1.61)
In(1+Non-Al patent counts) -0.081** 0.037* 0.040 0.041** -0.006

(-2.10) (1.81) (0.81) (2.03) (-0.31)
In(1+R&D spending) 0.139*** 0.111*>** 0.115*** 0.113*** 0.117*>**

(3.81) (3.35) (3.41) (3.39) (3.38)
Innovation dummy variable 0.120 -0.160** -0.052 -0.166** 0.033

(1.52) (-2.27) (-0.77) (-2.33) (0.28)
Control variables? Yes Yes Yes Yes Yes
FF48 industry fixed effects? Yes Yes Yes Yes Yes
Observations 997,382 997,382 997,394 997,394 956,844
R? 0.090 0.090 0.090 0.090 0.090

Panel B: Instrumented Al Patent Counts (IV) and Returns in Year t+1
Dependent variable is monthly stock return
Scaling variable for Al patent counts
None Total assets Total patent  Total patent R&D stock
stock counts

Year t+1
In(0.1+Al patent counts) 0.433*** 0.308*** 0.275*** 0.229*** 0.245***
[instrumented] (3.12) (3.00) (3.12) (3.12) (2.95)
Firm's Al exposure -0.019 -0.024 -0.025 -0.025 -0.030

(-0.39) (-0.48) (-0.50) (-0.49) (-0.58)
Customers' Al exposure 0.065 0.065 0.062 0.064 0.060

(1.36) (1.34) (1.30) (1.33) (1.18)
In(1+R&D stock) 0.220*** 0.218*** 0.221*** 0.216*** 0.225***
[tax credit induced] (5.86) (5.86) (5.90) (5.86) (5.83)
In(1+Non-Al patent counts) -0.268*** -0.160*** -0.124*** -0.159*** -0.191***

(-3.21) (-2.89) (-2.63) (-2.89) (-3.00)
In(1+R&D spending) -0.132*** -0.133*** -0.143*** -0.140*** -0.113%**

(-3.06) (-3.06) (-3.23) (-3.17) (-2.67)
Innovation dummy variable 0.149* -0.062 -0.133 -0.088 -0.085

(1.69) (-0.81) (-1.45) (-1.00) (-0.99)
Control variables? Yes Yes Yes Yes Yes
FF48 industry fixed effects? Yes Yes Yes Yes Yes
Observations 997,382 997,382 997,394 997,394 956,844
F-statistic for instrument 36.3 48.8 41.2 35.3 44.5
p-value of Hansen J-statistic 0.450 0.440 0.445 0.446 0.452
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Panel C: Instrumented Al Patent Counts (IV) and Returns in Year t+2 to Year t+5

Dependent variable is monthly stock return
Scaling variable for Al patent counts

Total patent ~ Total patent

None Total assets R&D stock
stock counts

Year t+2

In(0.1+Al patent counts) 0.736** 0.319** 0.321** 0.279** 0.234*
[instrumented] (2.22) (2.07) (2.48) (2.51) (1.74)
Observations 910,899 910,830 910,953 910,899 857,221
Year t+3

In(0.1+Al patent counts) 1.322** 0.644** 0.600** 0.558** 0.705*
[instrumented] (2.45) (2.47) (2.38) (2.37) (1.90)
Observations 835,074 834,948 835,247 835,074 774,358
Year t+4

In(0.1+Al patent counts) 0.379 0.509* 0.664** 0.563** 0.950
[instrumented] (0.71) (1.83) (2.25) (2.39) (1.55)
Observations 757,043 756,889 757,392 757,043 692,923
Year t+5

In(0.1+Al patent counts) 0.653 0.212 0.317 0.387* 0.587**
[instrumented] (1.20) (0.59) (1.21) (1.68) (2.00)
Observations 676,957 676,797 677,429 676,957 612,509
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Table 7
The Effect of Al Production on the Producer Firm's Profitability

This table shows the results of regressions of cash flow levels on Al production. Al patent counts are instrumented
with the interaction between the producer firm's R&D stock and its own Al exposure as well as that of its customers.
The sample period spans 1990-2017 in terms of year t. Al patent counts are measured in year t. They are
instrumented with R&D stock measured at year t-2 and Al exposure fixed before the start of the sample period.
Outcomes are measured in year t+1 and subsequent years. The sample and specifications are described in the text. In
Panel B, Al patent stock is measured at t-3 during the previous 10 years. In Panel C and Panel D, positive Al patent
stock is sorted into below and above its median (respectively, "low" and "high"). Variables are defined in Appendix
Table 2. *** ** and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Panel A: Current Al Patent Counts Only, Without Conditioning on Past Al Patent Stock
Dependent variable is return on assets

Year t+1 Year t+2 Year t+3

In(0.1+Al patent counts) [instrumented] 0.074** 0.034 0.019

(2.18) (1.33) (0.82)
In(1+R&D stock) [tax credit induced] 0.006** 0.007*** 0.006***

(2.57) (3.18) (2.86)
In(1+Non-Al patent counts) -0.038*** -0.017* -0.008

(-2.89) (-1.72) (-0.87)
Control variables? Yes Yes Yes
Fixed effects
State x Year? Yes Yes Yes
SIC3 industry? Yes Yes Yes
Firm? Yes Yes Yes
SIC2 industry x Year? Yes Yes Yes
Observations 92,275 85,721 79,813
F-statistic for instrument 25.7 25.0 25.3
p-value of Hansen J-statistic 0.991 0.312 0.036
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Panel B: Conditioning on Past Al Patent Stock Being Positive

Dependent variable is return on assets

Year t+1 Year t+2 Year t+3
In(0.1+Al patent counts) [instrumented] 0.081*** 0.036 0.023
(2.66) (1.59) (1.04)
In(0.1+Al patent counts) [instrumented] 0.008 0.010 0.007
x Dummy variable for past Al patent stock is positive (1.28) (1.62) (2.19)
Control variables and fixed effects? Yes Yes Yes
Observations 92,275 85,721 79,813

Panel C: Conditioning on Past Al Patent Stock Counts Being Positive and Separately Above the Median

Dependent variable is return on assets

Year t+1 Year t+2 Year t+3

In(0.1+Al patent counts) [instrumented] 0.086*** 0.039* 0.026

(2.78) (1.69) (1.14)
In(0.1+Al patent counts) [instrumented] 0.000 0.003 0.004
x Dummy var. for past Al patent stock is positive (0.05) (0.49) (0.57)
In(0.1+Al patent counts) [instrumented] 0.016** 0.012* 0.005
x Dummy variable for past Al patent stock is high (2.27) (2.73) (0.80)
Control variables and fixed effects? Yes Yes Yes
Observations 92,275 85,721 79,813

Panel D: Conditioning on Past Al Patent Stock Ratio Being Positive and Separately Above the Median

Dependent variable is return on assets

Year t+1 Year t+2 Year t+3
In(0.1+Al patent counts) [instrumented] 0.085*** 0.040* 0.023
(2.75) (1.71) (1.03)
In(0.1+Al patent counts) [instrumented] -0.004 -0.007 -0.008
x Dummy var. for past Al patent stock is positive (-0.61) (-0.97) (-1.03)
In(0.1+Al patent counts) [instrumented] 0.024** 0.031*** 0.030***
x Dummy variable for past Al patent stock is high (2.56) (3.15) (3.07)
Control variables and fixed effects? Yes Yes Yes
Observations 92,275 85,721 79,813
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Table 8
The Effect of Al Production on the Producer Firm's Risk

This table shows the results of regressions of cash flow and stock return volatilities on Al production. Al patent counts are instrumented with the interaction
between the producer firm's R&D stock and its own Al exposure as well as that of its customers. The sample period spans 1990-2017 in terms of year t. Al patent
counts are measured in year t. They are instrumented with R&D stock measured at year t-2 and Al exposure fixed before the start of the sample period. Outcomes
are measured in year t+1 and subsequent years. The sample and specifications are described in the text. In Panel B, Al patent stock is measured at t-3 during the
previous 10 years. In Panel C and Panel D, positive Al patent stock is sorted into below and above its median (respectively, "low" and "high™). Variables are
defined in Appendix Table 2. ***, ** and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Panel A: Current Al Patent Counts Only, Without Conditioning on Past Al Patent Stock
Dependent variable is

In(Volatility of return on assets) In(Volatility of stock returns)
Year t+1 Year t+2 Year t+3 Year t+1 Year t+2 Year t+3

In(0.1+Al patent counts) [instrumented] -0.710*** -0.454*** -0.470*** -0.229*** -0.178*** -0.187***

(-4.39) (-3.38) (-3.45) (-4.21) (-3.34) (-3.34)
In(1+R&D stock) [tax credit induced] -0.013 -0.019 -0.011 -0.002 -0.001 -0.002

(-0.84) (-1.41) (-0.77) (-0.43) (-0.19) (-0.39)
In(1+Non-Al patent counts) 0.278*** 0.170*** 0.179*** 0.082*** 0.051** 0.053**

(4.42) (3.20) (3.30) (3.94) (2.45) (2.34)
Control variables? Yes Yes Yes Yes Yes Yes
Fixed effects
State x Year? Yes Yes Yes Yes Yes Yes
SIC3 industry? Yes Yes Yes Yes Yes Yes
Firm? Yes Yes Yes Yes Yes Yes
SIC2 industry x Year? Yes Yes Yes Yes Yes Yes
Observations 91,251 84,909 78,943 91,854 89,416 81,842
F-statistic for instrument 25.7 25.0 25.3 25.9 26.4 25.6
p-value of Hansen J-statistic 0.732 0.247 0.017 0.780 0.455 0.190
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Panel B: Conditioning on Past Al Patent Stock Being Positive

Dependent variable is

In(Volatility of return on assets) In(Volatility of stock returns)
Year t+1 Year t+2 Year t+3 Year t+1 Year t+2 Year t+3
In(0.1+Al patent counts) [instrumented] -0.657*** -0.397*** -0.425*** -0.200*** -0.149*** -0.157***
(-5.17) (-3.39) (-3.53) (-4.11) (-2.98) (-3.01)
In(0.1+Al patent counts) [instrumented] -0.062*** -0.064*** -0.067*** -0.021*** -0.029*** -0.034***
x Dummy var. for past Al patent stock is positive (-2.62) (-2.72) (-2.72) (-2.70) (-3.62) (-3.96)
Control variables and fixed effects? Yes Yes Yes Yes Yes Yes
Observations 91,251 84,909 78,943 91,854 89,416 81,842
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Panel C: Conditioning on Past Al Patent Stock Counts Being Positive and Separately Above the Median

Dependent variable is

In(Volatility of return on assets)

In(Volatility of stock returns)

Year t+1 Year t+2 Year t+3 Year t+1 Year t+2 Year t+3
In(0.1+Al patent counts) [instrumented] -0.651*** -0.403*** -0.422%** -0.189*** -0.135%** -0.146***
(-5.07) (-3.43) (-3.49) (-3.84) (-2.70) (-2.79)
In(0.1+Al patent counts) [instrumented] -0.053* -0.036 -0.042 -0.009 -0.012 -0.018*
x Dummy var. for past Al patent stock is positive (-1.88) (-1.24) (-1.42) (-0.97) (-1.30) (-1.74)
In(0.1+Al patent counts) [instrumented] -0.024 -0.037 -0.029 -0.017 -0.022** -0.016
x Dummy variable for past Al patent stock is high (-0.74) (-1.14) (-0.92) (-1.58) (-2.01) (-1.37)
Control variables and fixed effects? Yes Yes Yes Yes Yes Yes
Observations 91,251 84,909 78,943 91,854 89,416 81,842
Panel D: Conditioning on Past Al Patent Stock Ratio Being Positive and Separately Above the Median
Dependent variable is
In(Volatility of return on assets) In(Volatility of stock returns)
Year t+1 Year t+2 Year t+3 Year t+1 Year t+2 Year t+3
In(0.1+Al patent counts) [instrumented] -0.668*** -0.415*** -0.428*** -0.193*** -0.144%** -0.153***
(-5.20) (-3.52) (-3.56) (-3.89) (-2.83) (-2.89)
In(0.1+Al patent counts) [instrumented] -0.074** -0.074** -0.094*** -0.014 -0.028** -0.033**
x Dummy var. for past Al patent stock is positive (-2.35) (-2.31) (-2.69) (-1.22) (-2.29) (-2.46)
In(0.1+Al patent counts) [instrumented] 0.031 0.020 0.048 -0.007 0.001 -0.001
x Dummy variable for past Al patent stock is high (0.79) (0.50) (2.17) (-0.48) (0.05) (-0.07)
Control variables and fixed effects? Yes Yes Yes Yes Yes Yes
Observations 91,251 84,909 78,943 91,854 89,416 81,842
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Table 9

The Effect of Al Production on the Producer Firm's Stock Return Volatility: Decomposition

This table shows the results of the same regressions of stock return volatility as in Table 8 Panel A but with slight

modifications, as indicated.

Panel A: Systematic Component of Stock Return Volatility from Fama and French (2015) Five-Factor Model

In(0.1+Al patent counts) [instrumented]
In(1+R&D stock) [tax credit induced]
In(1+Non-Al patent counts)

Control variables and fixed effects?
Observations

F-statistic for instrument
p-value of Hansen J-statistic

Dependent variable is In(Stock return volatility)

Year t+1 Year t+2 Year t+3
-0.316*** -0.292*** -0.306***
(-4.54) (-4.12) (-4.11)
0.007 0.003 -0.002
(0.98) (0.34) (-0.21)
0.089*** 0.075** 0.086***
(3.13) (2.56) (2.74)
Yes Yes Yes
91,870 89,418 81,844
25.9 26.4 25.6
0.531 0.316 0.235

Panel B: Idiosyncratic Component of Stock Return Volatility Fama and French (2015) Five-Factor Model

In(0.1+Al patent counts) [instrumented]
In(1+R&D stock) [tax credit induced]
In(1+Non-Al patent counts)

Control variables and fixed effects?
Observations

F-statistic for instrument
p-value of Hansen J-statistic

Dependent variable is In(Stock return volatility)

Year t+1 Year t+2 Year t+3
-0.186*** -0.136** -0.146**
(-3.43) (-2.52) (-2.56)
-0.007 -0.005 -0.005
(-1.26) (-0.86) (-0.85)
0.067*** 0.035* 0.036

(3.23) (1.66) (1.57)
Yes Yes Yes

91,870 89,418 81,844
25.9 26.4 25.6

0.747 0.905 0.500

Panel C: Beta from CAPM

In(0.1+Al patent counts) [instrumented]
In(1+R&D stock) [tax credit induced]
In(1+Non-Al patent counts)

Control variables and fixed effects?
Observations

F-statistic for instrument
p-value of Hansen J-statistic

Dependent variable is beta

Year t+1 Year t+2 Year t+3
-0.346*** -0.360*** -0.339***
(-4.75) (-4.66) (-4.33)
0.008 0.000 -0.008
(1.12) (0.05) (-0.94)
0.070** 0.089*** 0.091***
(2.33) (2.75) (2.79)
Yes Yes Yes
91,870 89,418 81,844
25.9 26.4 25.6
0.107 0.080 0.163
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Table 10
Mechanisms Underlying the Effect of Al Production: The Producer Firm's Labor Productivity

This table shows the results of regressions of labor productivity measures on Al production. Al patent counts are
instrumented with the interaction between the producer firm's R&D stock and its own Al exposure as well as that of
its customers. The sample period spans 1990-2017 in terms of year t. Al patent counts are measured in year t. They
are instrumented with R&D stock measured at year t-2 and Al exposure fixed before the start of the sample period.
Outcomes are measured in year t+1. The sample and specifications are described in the text. Variables are defined in
Appendix Table 2. *** ** and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Dependent variable is

Profit per In(Employment
employee / Total assets) In(Total assets)
In(0.1+Al patent counts) [instrumented] 0.073* -0.075 -0.030
(1.94) (-0.84) (-0.73)
In(1+R&D stock) [tax credit induced] 0.005** 0.019** -0.002
(2.41) (2.16) (-0.54)
In(1+Non-Al patent counts) -0.027* 0.043 0.021
(-1.92) (1.26) (1.29)
Control variables? Yes Yes Yes
Fixed effects
State x Year? Yes Yes Yes
SIC3 industry? Yes Yes Yes
Firm? Yes Yes Yes
SIC2 industry x Year? Yes Yes Yes
Observations 90,899 90,741 92,323
F-statistic for instrument 25.2 26.1 25.6
p-value of Hansen J-statistic 0.957 0.760 0.886
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Table 11
Mechanisms Underlying the Effect of Al Production: The Producer Firm's Capital Intensity

This table shows the results of regressions of capital intensity and investments on Al production. Al patent counts are instrumented with the interaction between
the producer firm's R&D stock and its own Al exposure as well as that of its customers. The sample period spans 1990-2017 in terms of year t. Al patent counts
are measured in year t. They are instrumented with R&D stock measured at year t-2 and Al exposure fixed before the start of the sample period. Outcomes are
measured in year t+1. The sample and specifications are described in the text. Variables are defined in Appendix Table 2. ***, ** and * indicate statistical
significance at the 1%, 5%, and 10% levels, respectively.

Dependent variable is In(e / Total assets)

Property_, plant, and Inventory Capex R&D spending Acqms!nons
equipment expenditures
In(0.1+Al patent counts) [instrumented] -0.236** -0.335** -0.377*** -0.636*** 0.348*
(-2.41) (-2.09) (-2.83) (-3.50) (1.67)
In(1+R&D stock) [tax credit induced] -0.002 0.039*** -0.027** 0.167*** 0.011
(-0.16) (2.66) (-2.18) (9.00) (0.50)
In(1+Non-Al patent counts) 0.099** 0.145** 0.117** 0.269*** -0.103
(2.55) (2.28) (2.21) (3.74) (-1.24)
Control variables? Yes Yes Yes Yes Yes
Fixed effects
State x Year? Yes Yes Yes Yes Yes
SIC3 industry? Yes Yes Yes Yes Yes
Firm? Yes Yes Yes Yes Yes
SIC2 industry x Year? Yes Yes Yes Yes Yes
Observations 91,860 92,323 92,316 92,332 92,336
F-statistic for instrument 26.0 25.6 25.6 25.6 25.6
p-value of Hansen J-statistic 0.116 0.967 0.367 0.733 0.839
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Table 12
Mechanisms Underlying the Effect of Al Production: The Producer Firm's Bargaining Power

This table shows the results of regressions of the volatility of various production inputs and outputs on Al production. Al patent counts are instrumented with the
interaction between the producer firm's R&D stock and its own Al exposure as well as that of its customers. The sample period spans 1990-2017 in terms of year
t. Al patent counts are measured in year t. They are instrumented with R&D stock measured at year t-2 and Al exposure fixed before the start of the sample
period. Outcomes are measured in year t+1. The sample and specifications are described in the text. Variables are defined in Appendix Table 2. ***, ** and *
indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Dependent variable is

In(Volatility of Product In(Volatility of In(Volatility of In(Volatility of
(Sales differentiation (Total costs (SG&A (CoGs
/ Total assets)) / Total assets)) / Total assets)) / Total assets))
In(0.1+Al patent counts) [instrumented] -0.471*** 0.500* -0.509*** -0.355*** -0.472%**
(-3.87) (2.90) (-4.06) (-3.00) (-3.79)
In(1+R&D stock) [tax credit induced] 0.005 -0.023 0.005 0.003 -0.003
(0.42) (-0.81) (0.41) (0.27) (-0.26)
In(1+Non-Al patent counts) 0.177%** -0.155 0.187*** 0.137*** 0.174***
(3.47) (-1.53) (3.73) (2.76) (3.47)
Control variables? Yes Yes Yes Yes Yes
Fixed effects
State x Year? Yes Yes Yes Yes Yes
SIC3 industry? Yes Yes Yes Yes Yes
Firm? Yes Yes Yes Yes Yes
SIC2 industry x Year? Yes Yes Yes Yes Yes
Observations 89,671 84,120 88,503 80,867 88,080
F-statistic for instrument 25.6 23.0 25.8 29.7 26.3
Hansen J-statistic 0.555 0.243 0.474 0.811 0.727
p-value of Hansen J-statistic -0.471*** 0.500* -0.509*** -0.355*** -0.472%**
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Table 13
The Effect of Al Production on the Producer Firm's Financial Policies

This table shows the results of regressions of various financing variables on Al production. Al patent counts are instrumented with the interaction between the
producer firm's R&D stock and its own Al exposure as well as that of its customers. The sample period spans 1990-2017 in terms of year t. Al patent counts are
measured in year t. They are instrumented with R&D stock measured at year t-2 and Al exposure fixed before the start of the sample period. Outcomes are
measured in year t+1. The sample and specifications are described in the text. Variables are defined in Appendix Table 2. ***, ** and * indicate statistical
significance at the 1%, 5%, and 10% levels, respectively.

Dependent variable is

In(Leverage) In(Cash holdings Net debt issuance Equity issuance Share repurchases
9 / Total assets) / Total assets / Total assets / Total assets
In(0.1+Al patent counts) [instrumented] 0.283* -0.250** 0.024* -0.082** 0.009
(1.70) (-2.13) (1.70) (-2.56) (1.60)
In(1+R&D stock) [tax credit induced] 0.020 0.002 0.002 -0.008*** 0.000
(1.21) (0.15) (1.40) (-2.88) (0.30)
In(1+Non-Al patent counts) -0.045 0.095** -0.004 0.044*** -0.001
(-0.68) (2.06) (-0.69) (3.47) (-0.32)
Control variables? Yes Yes Yes Yes Yes
Fixed effects
State x Year? Yes Yes Yes Yes Yes
SIC3 industry? Yes Yes Yes Yes Yes
Firm? Yes Yes Yes Yes Yes
SIC2 industry x Year? Yes Yes Yes Yes Yes
Observations 92,323 92,322 92,337 92,337 92,337
F-statistic for instrument 25.6 25.6 25.6 25.6 25.6
Hansen J-statistic 0.402 0.136 0.327 0.746 0.766
p-value of Hansen J-statistic 0.283* -0.250** 0.024* -0.082** 0.009
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Figure 1. Share of Al innovation in aggregate innovation activity. This figure shows the annual share of Al
patent grants in all patent grants (Al and non-Al). Innovation activity is measured variously as patent counts,
forward citations to patents, and the market value of patents.
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Figure 2. Share of breakthrough innovations in Al vs. non-Al innovations. This figure shows the annual rate of
patents that are classified as breakthrough patents. Classification is based on textual analysis identifying patent
grants that are distinct from prior patents but related to subsequent patents.

90



Panel A: Share of Industries that Produce Al Innovation
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Panel B: Share of Industries that Produce Innovation using Prior Al Innovation
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Figure 3. Diffusion of Al innovation across industries. This figure shows the diffusion of Al innovation across
industries (SIC3s). Panel A shows the share of industries with Al patent grants exceeding various thresholds, e.g.,
industries where Al patents account for at least 10% of all patents. Panel B shows the share of industries with patent
grants that cite prior Al patents, where such citing patent grants exceed various thresholds, e.g., accounting for at
least 10% of patents in the industry.
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Panel A: Share of Publicly Traded U.S. Firms, Relative to All Patenting Entities, of Al vs. Non-Al Patents
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Panel B: Share of Publicly Traded U.S. Firms, Relative to All U.S. Firms, of Al vs. Non-Al Patents
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Panel C: Share of Innovative Publicly Traded U.S. Firms With At Least One Al Patent
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Figure 4. The importance of publicly traded firms in Al innovation. This figure shows the share of publicly
traded firms in Al patent grants separately from their share in non-Al patent grants. The share of publicly traded
U.S. firms is calculated relative to all patenting entities (Panel A) and also relative to all U.S. firms (Panel B). The
figure also shows, within the sample of publicly traded U.S. firms with at least one patent, the share of firms with at
least one Al patent (Panel C).
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Appendix Table 1
llustrative Examples of Al Patents

This table shows illustrative examples of Al patents in the baseline sample restricted to industries with at least 10
firms per year every year during the sample period. Patent numbers and titles reference patents from the USPTO.

Industries are ranked, from greatest to least, based on their total number of Al patents, as in Table 1.

Patent number  Patent title Firm SIC3 Industry Al
patent rank

10043516 Intelligent automated assistant Apple 366 5

8892487 Electronic synapses for reinforcement IBM 737 1
learning

8384776 Detection of topological structure from Toyota 371 9
sensor data with application to
autonomous driving in semi-structured
environments

3987279 Automatic performance reserve (APR) Boeing 372 8
system

8140069 System and method for determining the Sprint 481 7
audio fidelity of calls made on a cellular
network using frame error rate and pilot
signal strength

7231074 Method for determining the efficacy of an Pfizer 283 10
anti-cancer  treatment using image
analysis

7657494 Method for forecasting the production of Chevron 291 11
a petroleum reservoir utilizing genetic
programming

7370001 Method and system of forecasting Delta 451 29
unscheduled component demand

4827426 Data acquisition and processing system Coca-Cola 208 27
for post-mix beverage dispensers

9218633 Cooking management Starbucks 581 34
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Appendix Table 2
Variable Definitions

Independent Variables Common to All Regressions

Name

Definition

- Al patent counts
- Non-Al patent counts

- R&D stock [tax credit induced]

- Firm's Al exposure

- Customers' Al exposure

- Total assets
- Firm age
- Innovation dummy variable

The number of Al patent grants during the 12 months before the fiscal
yearend date

The number of non-Al patent grants during the 12 months before the fiscal
yearend date

R&D spending predicted using the user cost of R&D implied by federal
and state R&D tax credits, capitalized during the previous 10 years at a
depreciation rate of 15%. See Section 4.1 for details.

The producer firm's industry's labor's exposure to Al. Al exposure scores
for each occupation are from Felten, Raj, and Seamans (2021) and
aggregated at the industry level using employment shares between 1988
and 1990. Firms are assigned to the industry-level Al exposure of their
primary industry. See Section 4.1 for details.

The producer firm's customers' industries' labor's exposure to Al. Al
exposure scores for each occupation are from Felten, Raj, and Seamans
(2021) and aggregated at the industry level using employment shares
between 1988 and 1990. Customer industries and their product purchase
shares are identified using industry input-output tables. Customers' Al
exposure is calculated as the product purchase weighted average of the
industry-level Al exposures of customer industries. See Section 4.1 for
details.

AT from Compustat

Years since the date the firm began trading publicly according to CRSP
Dummy variable for whether the firm has at least one patent granted during
the preceding 12 months

Al Patent Counts with Alternative Scaling Variables

Name

Definition

- Al patent counts / Total assets
- Al patent counts

/ Total patent stock
- Al patent counts

/ Total patent counts

- Al patent counts / R&D stock

Al patent counts as defined above scaled by AT from Compustat (in $
billions). Small constant added before taking logarithm: 0.01.

Al patent counts as defined above scaled by the cumulative number of total
patent (Al and non-Al) grants during the 10 years before the fiscal yearend
date. Set to zero when the denominator is zero. Small constant added before
taking logarithm: 0.0001.

Al patent counts as defined above scaled by total patent (Al and non-Al)
counts defined analogously during the same period. Set to zero when the
denominator is zero. Small constant added before taking logarithm: 0.0001.
Al patent counts as defined above scaled by R&D stock as defined above
but using actual (rather than predicted) R&D spending (in $ billions). When
the denominator is zero, set to zero and missing, respectively, if total (Al
plus non-Al) patent counts is, respectively, zero and positive. Small
constant added before taking logarithm: 0.01.

Variables Used in Stock Returns Analysis

Name

Definition

- Monthly stock return
- Market capitalization
- Market-to-book of equity

- Momentum

RET from CRSP

Stock price multiplied by shares outstanding from CRSP

Market capitalization at the end of December from CRSP scaled by the
book value of common equity in the same year from Compustat. The latter
is constructed as the Compustat book value of stockholders' equity, plus
balance-sheet deferred taxes and investment tax credit, minus the book
value of preferred stock. See Fama and French (1993) for details.
Cumulative stock return during months [-12,-2]
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- Short-term reversal

Stock return during the previous month from CRSP

- Stock price Stock price from CRSP lagged by two months
Dependent Variables

Name Definition

Profitability

- Return on assets NI/AT from Compustat

Risk

- Volatility of return on assets

- Volatility of stock returns

Labor productivity
- Profit per employee
- Employment / Total assets

Capital intensity
- PP&E / Total assets
- Inventory / Total assets

- Capex / Total assets
- R&D / Total assets

- Acquisitions / Total assets

Bargaining power
- Volatility of
(Sales / Total assets)
- Product differentiation

- Volatility of
(Total costs / Total assets)
- Volatility of
(SG&A / Total assets)
- Volatility of
(COGS / Total assets)
- Volatility of stock returns

Financial policies
- Leverage

- Cash holdings / Total assets
- Net debt issuance / Total assets

- Equity issuance / Total assets
- Share repurchase / Total assets

Standard deviation of quarterly NIQ/AT during the 12 months after the
fiscal yearend date. From Compustat.

Standard deviation of daily stock returns during the 12 months after the
fiscal yearend date. From CRSP.

NI/EMP from Compustat
EMP/AT from Compustat

PPENT/AT from Compustat

INVT/AT from Compustat. Small constant added before taking logarithm:
(C):.g%l).(/AT from Compustat. Small constant added before taking logarithm:
&CF){(I)Z)l/AT from Compustat. Small constant added before taking logarithm;
%E}E/AT from Compustat. Small constant added before taking logarithm:

Standard deviation of quarterly SALEQ/AT during the 12 months after the
fiscal yearend date. From Compustat.

Hoberg and Phillips (2016) average product similarity score, subtracted
from 1, multiplied by 100

Standard deviation of quarterly (COGSQ+XSGAQ)/AT during the 12
months after the fiscal yearend date. From Compustat.

Standard deviation of quarterly XSGAQ/AT during the 12 months after the
fiscal yearend date. From Compustat.

Standard deviation of quarterly COGSQ/AT during the 12 months after the
fiscal yearend date. From Compustat.

Standard deviation of daily stock returns during the 12 months before the
fiscal yearend date. From CRSP.

(DLC+DLTT)/AT from Compustat. Small constant added before taking
logarithm: 0.01.

CHE/AT from Compustat. Small constant added before taking logarithm:
0.01.

(DLCCH+DLTIS-DLTR)/AT from Compustat

SSTKJ/AT from Compustat

PRSTKC/AT from Compustat
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Appendix Table 3
Example: Top Publicly Traded Firms by Al Patent Grants

This table shows the top 20 publicly traded firms by Al patent grants, along with their Al patent counts and industry
classification.

Al patent
counts (annual Firm SIC3  Industry name

mean)

1,499 IBM 737  Computer programming, data processing, and other computer related
722 Microsoft 737  Computer programming, data processing, and other computer related
704 Google 737  Computer programming, data processing, and other computer related
297 HP 357  Computer and office equipment
277 GE 351  Engines and turbines
247 Intel 367  Electronic components and accessories
240 Facebook 737  Computer programming, data processing, and other computer related
227 HP 357  Computer and office equipment
205 Amazon 596  Non-store retailers
190 Xerox 357  Computer and office equipment
186 Oracle 737  Computer programming, data processing, and other computer related
170 AT&T 481  Telephone communications
158 Apple 366  Communications equipment
134 Lucent 737  Computer programming, data processing, and other computer related
131 Sun 357  Computer and office equipment
130 Qualcomm 367  Electronic components and accessories
101 Cisco 357  Computer and office equipment

89 Yahoo 737  Computer programming, data processing, and other computer related
77 Adobe 737  Computer programming, data processing, and other computer related
75 Verizon 481  Telephone communications
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Appendix Table 4
Example: Top Occupations in, and Top Customer Industries of, the Computer Programming Industry

This table shows, for the computer programming industry (SIC 737), the top 20 occupations (Panel A) and the top
20 customer industries (Panel B). Industry SIC 737 is chosen because it has the most Al patent grants.

Panel A: Top Occupations in Industry SIC 737

Employment share (%)  Occupation name ?plei)égr?tsi?g
15.0 Computer programmers 89
8.8 Systems analysts 77
51 Computer engineers 86
4.7 General managers & top executives 79
4.6 Data entry keyers, except composing 67
3.3 Secretaries, except legal & medical 83
3.1 Computer operators, except peripheral equipment 73
2.9 Engineering, mathematical & natural sciences managers 82
2.3 Data processing equipment repairers 53
2.1 General office clerks 80
2.1 First line supervisors, clerical & administrative 82
2.0 Bookkeeping, accounting & auditing clerks 82
2.0 Salespersons, scientific products & services 77
2.0 Marketing/advertising/public relations managers 91
1.9 Sales agents, business services 91
1.9 Electrical & electronic engineers 83
1.9 Electrical/electronic technicians & technologists 61
1.8 Computer programmer aides 89
1.8 Other professional, paraprofessional/technicians 79
1.5 Other computer scientists & related 81
Panel B: Top Customer Industries of Industry SIC 737
Product Al exposure
purchase share  SIC3  Industry name .
%) (percentile)
13.2 737  Computer programming, data processing, and other computer related 93
12.9 602  Commercial banks 92
125 872  Accounting, auditing, and bookkeeping services 100
5.8 874  Management and public relations services 89
5.3 735  Miscellaneous equipment rental and leasing 69
3.8 801  Offices and clinics of doctors of medicine 87
3.8 603  Savings institutions 93
2.6 806  Hospitals 66
2.6 481  Telephone communications 81
2.6 871  Engineering, architectural, and surveying services 91
2.1 621  Security brokers, dealers, and flotation companies 99
15 802  Offices and clinics of dentists 65
1.4 491  Electric services 62
1.1 451  Air transportation, scheduled, and air courier services 56
1.1 606  Credit unions 94
0.8 541  Grocery stores 48
0.8 272  Periodicals: publishing, or publishing and printing 88
0.7 633  Fire, marine, and casualty insurance 96
0.6 631  Life insurance 96
0.6 822  Colleges, universities, professional schools, and junior colleges 86
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