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Abstract 
 

Yes, by decreasing firm risk, not by increasing profitability, and with investors taking years to 
recognize the value created. We start, using novel AI patent data, by documenting significant 
corporate production of AI innovation as early as 1990. Then, we show that a signification 
motivation for a firm's AI production is the mutually reinforcing effects of the firm's innovation 
capacity (exogenous R&D stock) and its labor inputs' AI exposure (both the firm's own and its 
customers'). We use the interaction of these two effects to instrument for AI production. We find 
that producing AI creates firm value through a large, permanent decrease in risk (cash flow and 
stock return, systematic and idiosyncratic). Further evidence suggests that AI lowers physical 
capital intensity and increases bargaining power for producing firms. The initial market reaction 
to AI patent announcements is economically small, but abnormal stock returns thereafter are 
significantly positive (about 5% per year) for (only) roughly three years, suggesting initial 
undervaluation followed by gradual correction. We find no evidence of investor learning, except 
during the past five years. We empirically distinguish producing AI innovation versus AI 
adoption, automation, general technology, and other potential confounds. 
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1. Introduction 

Artificial intelligence, the technology of machine cognition, has grown explosively in 

recent years. In this paper, we study the production of AI innovation, and its value implications 

for producing firms, using newly available USPTO data on AI patents.1,2 We focus on patented 

innovations because patent protection allows the firm to control the technology it produces. We 

document that, in the aggregate, AI is increasingly a prominent subset of all innovation activity 

during the past three decades. In 1990, AI already accounted for 5% of all innovation activity, 

and has risen to 15%-35% of innovation today.3 Additionally, AI innovations are consistently 

more valuable over time than non-AI innovations, in terms of both scientific and commercial 

value, and encompass far more technological breakthroughs. Moreover, as expected from a 

general purpose technology, AI innovation has diffused widely over time across industries. For 

instance, AI accounts for at least a majority of all innovation in about 20% of industries today. 

Finally, U.S. publicly traded firms dominate AI, producing about 70% of AI innovation by U.S. 

firms. 

Focusing on publicly traded firms over the past three decades, we document causally how 

AI innovation creates value for producing firms, and that the stock market appears to 

consistently undervalue AI innovation for roughly three years after it is produced. AI innovation 

still only has a small, brief positive impact on profitability to date. Instead, producing AI 

innovation creates value principally by substantially and permanently decreasing risk (cash flow 

                                                 
1 Production of new AI technology is distinct from the adoption of previously developed AI technology as studied 
by prior literature (e.g., Alekseeva, Giné, Samila, and Taska (2020) and Babina, Fedyk, He, and Hodson (2022, 
2024a, 2024b)). The distinction between production and adoption is important in both conceptual predictions, 
notably for firm risk, and in the corresponding empirical effects, as our paper shows. 
2 As we summarize in Section 2.1, the USPTO data, from Giczy, Pairolero, and Toole (2022), classify patents as 
"AI" and "non-AI" using stratified machine learning that assigns patents a predicted probability of being AI. AI 
compasses the eight AI component technologies identified by the National Institute of Standards and Technology. 
The machine learning patent classification is validated by AI specialist USPTO patent examiners, and it is shown to 
outperform alternatives classifications in minimizing false positives and negatives. 
3 The share of AI innovation is highest when measured based on the scientific or commercial value of patents. 
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and stock return, systematic and idiosyncratic). We find that firms direct their innovation 

capacity toward producing AI technology based on the extent to which AI substitutes for or 

complements labor, both the firm's and its customers'. Our evidence on mechanisms suggests that 

AI technology lowers the producing firm's physical capital intensity and increases its bargaining 

power. We find no evidence over three decades that investors learn more quickly about the value 

of AI innovation, except for the past five years during which the initial market reaction remains 

economically small and there is no longer a significant drift after AI patent announcements. 

We start our analysis with a brief conceptual framework (with illustrations) of how 

producing AI innovation affects firm value. AI, as machine cognition technology, can sort 

through large and multi-dimensional flows of data (text, vision, speech, etc.), learn from its own 

evolving history, and dynamically update itself. As such, it can substitute for or complement 

many of the main functions of a firm's employees: information acquisition and forecasting (e.g., 

estimating customer demand using machine learning); monitoring (e.g., supervising employee-

customer interactions with natural language processing and speech recognition); and decision 

making (e.g., autonomous inventory management or computer vision assisted quality control). 

AI innovations corresponding to the foregoing applications were being produced (and patented) 

at least as far back as the early 1990s.4 Moreover, there is significant production of (patented) AI 

innovation even in non-technology industries (e.g., aircrafts, motor vehicles, drugs, petroleum, 

and industrial equipment).5 

Turning to firm value implications, producing AI innovation can naturally increase 

profitability through all of the above applications of the technology. However, AI can also 

decrease risk, by improving the reliability of the firm's execution and its responsiveness to 

                                                 
4 We provide examples of a wide variety of patented machine cognition tasks in Section 2.2. 
5 This is evident from ranking industries based on patented AI innovation, which we examine in Section 3.2. 
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changing business conditions. Importantly, when the firm can control its technology (e.g., AI 

innovations that are patent protected), it can create more value, by, for instance, excluding others 

from using its technology (e.g., its product market competitors), which will decrease the firm's 

correlation with the rest of the economy and decrease its risk. 

Turning to a detailed exposition of our empirical analysis at the firm level, we begin by 

examining a potentially significant motivation for firms to produce AI innovation. Our intuition 

is that firms that benefit more from AI technology will devote more innovation resources to 

producing it. Firms that benefit more are those whose own labor, or their customers', is more 

easily substituted for or complemented by AI technology. We refer to such firms as having high 

AI exposure. 

This underlying intuition forms the basis of our empirical strategy for identifying the 

causal effect of AI innovation. If a firm with exogenously high AI exposure experiences an 

exogenous increase in innovation capacity, it will produce more AI innovation compared to an 

otherwise identical firm with exogenously low AI exposure. We instrument actual AI innovation 

using the interaction of two mutually reinforcing incentives for a firm to produce AI innovation: 

the firm's (industry level) exposure to AI technology, and the firm's (R&D tax credit induced) 

innovation capacity. In what follows, we describe the construction of these two components and 

explain their plausible exogeneity. 

We construct the two components of our interaction instrument (a kind of shift-share) as 

follows. For the first component, we calculate industry-level AI exposure scores using 

occupation-level (SOC) AI exposure scores6 weighted by employment in each occupation in 

                                                 
6 From Felten, Raj, and Seamans (2021). These scores capture the extent to which labor in an occupation can be 
substituted for or complemented by AI technology. 
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each industry (SIC3) fixed before the start of our sample period.7 An important advantage of 

using time-invariant, pre-sample period, industry-level AI exposure is that it minimizes the 

possibility that firms choose their (firm-level) AI exposure endogenously with firm outcomes. 

For the second component, we construct the firm's plausibly exogenous R&D capital stock 

following the literature.8 Specifically, we predict firm-year R&D spending with federal and state 

R&D tax credits, which vary over time across the firm's R&D hubs located in different cities. 

We then cumulate predicted R&D spending to R&D capital stock over the firm's prior history. 

We address potential threats to our identification below, after presenting our main results on 

valuation implications.9 

In the first stage of our instrumental variables analysis, we predict the production of AI 

innovation. We find that for a typical increase in our interaction instrument, AI patent counts 

increase by about 13% relative to the mean, roughly similarly for both the firm's own AI 

exposure and its customers' (each exposure varying across industries).10 We use this natural 

measure of AI innovation activity, AI patent counts, in our baseline analyses throughout the 

paper, but the results are similar using alternative scaling variables such as total assets and total 

patent counts. 

We then empirically examine the value created by corporate production of AI innovation, 

starting with AI patent grant announcements. The initial market reaction is economically small 
                                                 
7 We measure the AI exposure of a firm's customers analogously, using our industry AI exposures combined with 
inter-industry product purchase weights from the BEA's input-output tables. 
8 For instance, see Wilson (2009); Bloom, Schankerman, and Van Reenen (2013); Hombert and Matray (2018); and 
Babina and Howell (2024). The latter provide comprehensive evidence for the exogeneity of R&D capital stock thus 
constructed, including their own evidence as well as that from the prior literature. 
9 As detailed in Section 4.1., the IV results throughout the paper are incremental to controlling for the direct effects 
of (tax credit induced) R&D capital stock and AI exposure. We also control for whether the firm produces patents as 
well as the firm's non-AI patent count, size, and age. Finally, we sweep out persistent differences across firms, three-
digit SIC industries (which, indirectly, largely sweep out AI exposure), two-digit SIC industries each year, and the 
firm's headquarters state each year (which, indirectly, largely sweeps out R&D capital stock). 
10 The results throughout the paper are robust to using either instrument (firm or customers) alone. We use both 
instruments in our baseline analysis because we have no theoretical basis for favoring either exposure, whereas we 
can increase the precision of our IV estimates by using both exposures together. 
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during the first event week (6.4 basis points for the average firm-day). Rather than extending the 

event window, we focus instead on using annual AI patent counts to predict future annual stock 

returns because this lower frequency analysis has better statistical and economic properties.11  

We start our returns regression analyses using actual AI patent grants, which are readily 

observable to investors, and form portfolios each year. We find that a high minus low AI stock 

portfolio earns risk-adjusted returns of roughly 50 basis points per month. This could be 

consistent with either compensation for risk (if producing AI increases risk), or with investors 

only gradually impounding into stock prices the positive value effects of producing AI 

innovation (if producing AI increases profitability and/or decreases risk). By contrast, 

comparably constructed non-AI patent portfolios do not reliably spread returns. 

We then exploit our IV approach to more credibly identify the effect of producing AI 

innovation on returns in a reduced form setting. We double sort stocks (independently) into 

portfolios based on firms' (tax credit induced) R&D capital stock and their AI exposure. We 

again find that portfolios, at the intersection of these double sorts, outperform by about 50 bps 

per month (i.e., the high minus low AI exposure spread netting out the high minus low R&D 

capital stock spread). Our portfolio returns results are similar using a wide range of factor 

models. 

Additionally, we implement our IV analysis in monthly Fama-MacBeth cross-sectional 

regressions using all sample firms over three decades. This more demanding approach allows us 

to include a battery of control variables like in our first stage IV regressions (e.g., R&D capital 

stock, AI exposure, and non-AI patent counts) as well as established determinants of stock 

returns. We again find a significant return spread, comparable in magnitude to the preceding 

                                                 
11 As explained in Section 6.1, the annual frequency improves measurement precision of the firm's AI innovation 
activities: capturing their scale and synergies while mitigating their persistence, all within the firm; and accounting 
for their undervaluation by investors. It also makes possible our IV analysis, for identification. 
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portfolio analysis. The results of our stock returns analyses, taken together, consistently indicate 

that there is a small initial market reaction to producing AI innovation followed by a significant 

return spread for roughly three years. 

We next examine how producing AI innovation creates firm value using the canonical 

financial drivers of value: cash flows and risk. Using detailed firm-year panel data spanning 

three decades, we focus on our IV estimates to identify the causal effect of producing AI 

innovation. Since the full productivity potential of AI (e.g., as measured by profits) may not be 

realized by the end of our sample period,12 our estimates may be understated. 

In our first IV results, we find that after producing AI innovation (i.e., during the year 

after we measure AI patent grants), producer firms become transitorily more profitable. For a 

typical 10% increase in instrumented AI patent counts, net income increases by roughly 0.7 

percentage points relative to total assets. However, this first year effect becomes insignificant by 

the second year. Recognizing that experience with AI production in the past may facilitate AI 

production in the future, we explore here the moderating role of experience. The evidence 

suggests that the effect of AI production on profitability is driven by firms with more experience 

producing AI innovation (as measured by the firm's past AI patent stock). 

More significantly, AI producer firms become permanently less risky. A 10% increase in 

instrumented AI patent counts decreases the volatility of net return on assets by about 7%. This 

lower cash flow volatility is also reflected in lower stock return volatility, which decreases by 

roughly 2%. Both effects persist for at least five years and are also magnified by experience 

producing AI innovation. Decomposing total stock return volatility into systematic and 

idiosyncratic components, we find that both decrease permanently. Our finding that AI 

                                                 
12 E.g., Brynjolfsson, Rock, and Syverson (2019) argue that AI technology is still in the early stages of diffusing 
across sectors and into complementary technologies. 
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production decreases risk is consistent with the firm using its (patented) AI technology to 

improve the reliability of its execution and its responsiveness to changing business conditions. 

Furthermore, in the second half of our sample period, the decrease in risk is slightly larger (but 

there is no difference in profitability or future stock returns). At the same time, all of our results 

(profitability, risk, and returns) are stronger for higher quality AI patents (as captured by higher 

scientific and commercial value). 

Taken as a whole, the results are consistent with investors only gradually impounding 

into stock prices over several years the positive value effects (mainly, lower risk) of producing 

AI innovation. Undervaluation taking several years to be corrected is consistent with limits to 

arbitrage: few people may really understand both AI technology itself and how to value it, during 

most of our sample period; and valuing long-term risk may be particularly difficult (as opposed 

to short-term profitability). 

We now turn to potential threats to our identification. We do have plausibly exogenous 

variation in the firm's innovation capacity, as captured by its (tax credit induced) stock of R&D 

capital (incrementally to our demanding set of fixed effects). However, since our measure of AI 

exposure only varies at the industry level (not at the firm-year level), the main threat to 

identification is any omitted factor at the industry level that is correlated with AI exposure and 

reinforces the effect of the firm's innovation capacity on profitability, risk, or other firm 

outcomes. We address the possibility that firms respond to random shocks to their innovation 

capacity differently in different industries, but specifically not because of different AI exposures, 

using a variety of aggressive specifications (Section 7.3). For instance, we include industry fixed 

effects interacted with R&D stock or industry-state fixed effects, or we include lagged dependent 
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variables. We are also able to empirically distinguish the production of AI innovation from 

potential confounds such as AI adoption, automation, and general technology.13 

We then provide suggestive evidence on various mechanisms through which producing 

AI innovation can increase firm value, particularly when the firm controls its technology and 

exclude others from using it. First, AI can enable the firm to use its physical assets more 

efficiently or even require less physical capital to produce the same or more output. Indeed, we 

find a decrease in physical capital (e.g., PP&E) as well as investment (e.g., capex). Second, AI 

can increase the firm's bargaining power vis-à-vis its customers, employees, and other business 

counterparties. Some benefits of AI technology can accrue to the producer firm's counterparties 

downstream and upstream in its supply chain (e.g., AI embedded products), which the producer 

firm can use to negotiate business deals that are more lucrative or more stable for itself.. We find 

evidence of more stable sales and costs, and of greater product differentiation. Third, we find that 

AI innovation increases labor productivity (e.g., profit per employee), but only transitorily so 

(much like for profitability, as measured by net income to total assets). Moreover, AI innovation 

does not affect employment or the overall scale of the firm, which suggests that AI complements, 

rather than substitutes, labor. 

In our final analysis, we examine the financial policy implications of AI innovation. Both 

an increase in expected future profitability and the decrease in risk that we document would 

enable the firm to be more aggressive with its financial structure. Our results, which include 

higher leverage and lower cash holdings, indicate that this is the case. 

We contribute to the literature on the economics of artificial intelligence. The existing 

literature focuses on AI adoption and finds that it increases firm growth and product innovation 

                                                 
13 We accomplish this by testing the effect of corresponding control variables from the literature, respectively, 
Babina, Fedyk, He, and Hodson (2024a)), Zhang (2019), and Loughran and Ritter (2004). 
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(Alekseeva, Giné, Samila, and Taska (2020) and Babina, Fedyk, He, and Hodson (2024a)) while 

flattening organizational hierarchies (Babina, Fedyk, He, and Hodson (2022)) and reducing 

hiring in non-AI positions (Acemoglu, Autor, Hazell, and Restrepo (2022)). Other studies find 

that, in high skill occupations, potential applications of AI change traditional work procedures 

(Grennan and Michaely (2021, 2020)). AI tools are also used to estimate latent corporate 

characteristics such as culture and climate exposure (Li, Mai, Shen, and Yan (2021), Li, Mai, 

Shen, Yang, and Zhang (2025), and Sautner, van Lent, Vilkov, and Zhang (2023)). 

We, instead, focus on the production of AI innovation. We show that it increases a firm's 

future stock returns, reflecting a large, permanent decrease in risk (cash flow and stock return, 

systematic and idiosyncratic) and a small, transitory increase in profitability. Our results are 

robust to controlling for AI adoption as captured by the resume or job posting measures used in 

prior literature. In contrast to our AI production, AI adoption in the literature increases 

systematic risk (market beta increases) and decreases idiosyncratic risk, leaving total risk 

unchanged (Babina, Fedyk, He, and Hodson (2024b)). These complementary findings are 

consistent with opposite control strategies for various AI innovations: the producer firm keeping 

its technology for its own use, as opposed to the producer firm giving it away to other firms for 

adoption. We summarize the contrasting risk mechanisms in Section 7.3.3. There does not 

appear to be evidence on profitability in the prior literature. 

Moreover, a recent literature on the productivity implications of AI innovation argues 

that AI may not enhance productivity as much as commonly expected, or its productivity 

enhancements will take much longer to materialize (Brynjolfsson, Rock, and Syverson (2019)). 

Our examination of AI production over three decades suggests that, at least for AI producer 
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firms, both forward looking stock prices and realized corporate operational outcomes reflect 

some productivity gains from AI innovation. 

Our paper uniquely provides causal evidence, from all U.S. publicly traded firms over the 

past three decades, showing that, and how, producing AI innovation, incrementally to non-AI 

innovation, increases firm value. Other recent studies examine stock returns around particular 

events to uncover a moderating role on firm value of the firm's labor's AI exposure: Google's 

public launch of TensorFlow (Rock (2021)) and OpenAI's ChatGPT (Eisfeldt, Schubert, and 

Zhang (2023)). Earlier studies in the literature on corporate innovation and stock returns examine 

the predictive role of R&D intensity (Chan, Lakonishok, and Sougiannis (2001)), innovation 

efficiency and originality (Hirshleifer, Hsu, and Li (2013, 2018)), commercialization of R&D 

(Cohen, Diether, and Malloy (2013)), and firm size (Stoffman, Woeppel, and Yavuz (2022)). 

Finally, we contribute a novel identification methodology for the production of AI 

innovation. We use a two variable interaction instrument for actual AI production: R&D capital 

stock induced by state-level R&D tax credits and industry-level AI exposure. Prior studies in this 

emerging literature use interaction instruments for local housing prices (Chaney, Sraer, and 

Thesmar (2012) and Adelino, Schoar, and Severino (2015)) and Chinese development finance 

(Dreher, Fuchs, Parks, Strange, and Tierney (2021)). The existing AI literature focuses on 

identifying the causal effect of AI adoption. To this end, Babina, Fedyk, He, and Hodson (2024a) 

exploit the AI research embedded in university alumni networks at the firms. Grennan and 

Michaely (2020) use news headline length to predict the usefulness of AI in stock analysis. Rock 

(2021) and Eisfeldt, Schubert, and Zhang (2023) use product launch events. 

The rest of this paper is organized as follows. Section 2 describes the measurement of AI 

innovation, and Section 3 characterizes AI innovation. Section 4 presents the methodology. 
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Section 5 examines a significant motivation for AI production. Section 6 and Section 7 examine, 

respectively, the value implications and key value drivers of AI production. Section 8 and 

Section 9 examine the mechanisms underlying AI production and its financing implications, 

respectively. Section 10 concludes. 

2. Measurement of AI Production 

2.1. Measuring AI Production 

To measure the production of AI innovation so that we can study its effects, we use 

patents that are classified as "AI patents" and to which we refer as such throughout the paper. As 

measures of innovation output, AI patent grants capture the capability of the firm to take 

commercial advantage of the AI technology that it produces. It can do so by implementing AI in 

its own operations, or supplying AI to its business counterparties, especially its customers, either 

directly (e.g., through patent transfers) or indirectly (e.g., embedded in product and services). 

To classify patents in the USPTO database as AI and non-AI, we use the recently 

released classification of Giczy, Pairolero, and Toole (2022). Traditional methods of identifying 

specific technologies in patent documents are not well suited to identifying AI technology in 

patent documents. Perhaps the greatest difficulty with AI is that it is a general purpose 

technology and hence necessarily overlaps technology fields. Consequently, AI cannot simply be 

captured by a limited, predetermined set of widely used technology classes (e.g., CPCs) or 

keywords. While previous approaches like these (e.g., see Cockburn, Henderson, and Stern 

(2019)) tend to be correct about the patents that they identify as "AI", they also tend to miss a 

large number of patents that are in fact "AI". 

As an improvement, Giczy et al. (2022) take a stratified machine learning approach. We 

provide a summary of their approach here, and refer the reader to Appendix 1 for a description of 
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the key details. First, AI is broken down into eight component technologies (e.g., knowledge 

processing and speech recognition). Next, a set of "surely AI" patents is identified as those that 

are at the intersection of four technology classification systems (CPC, IPC, USPC, and DWPI). 

Then, a set of "surely non-AI" patents is identified, after excluding patents that are even remotely 

related to the "surely AI" patents (e.g., through patent family links or citations) and technology 

classes with abnormally high share of "surely AI" patents. 

A machine learning model is trained using the "surely AI" and "surely non-AI" patents, in 

several passes designed to minimize both false positives and false negatives in the subsequent 

application to the universe of patents. After training, the model subsequently evaluates all patent 

documents for their AI content, and assigns them a predicted probability of the patent containing 

a particular AI component technology. Finally, if the patent is predicted to be AI based on any 

AI component technology, it classified as an AI patent. 

For a classification of AI and non-AI patents to be accurate, it must naturally minimize 

both false positive (minimal patents classified as "AI" that are not AI) and false negatives 

(minimal patents classified as "non-AI" that are in fact AI). With both of these objectives in 

mind, Giczy et al. (2022) carefully test their patent classification and show that it outperforms 

the existing alternatives.14 

2.2. Understanding AI Patents 

To better understand the patents that we use to measure AI innovation, we provide 

diverse examples of AI technologies, firms, and industries that use such patents in processes and 

products. These examples illustrate that (patented) AI technologies include a wide variety of 

                                                 
14 The authors use four patent examiners at the USPTO, who are specialists in AI, to classify patents as AI or non-AI 
from 800 randomly selected patent documents. Each patent is reviewed by at least two examiners. If the first two 
examiners disagree, a third examiner adjudicates. Finally, the patent examiners' annotations are used to evaluate the 
validity of the authors' prediction model for false positives, false negatives, and a composite measure of the two. The 
authors' model is compared (and found superior to) existing alternative models. 
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machine cognition tasks, they can be used by both the producer firm and its customers, and they 

can be used across many industries. The examples, shown in Appendix Table 1, are inspired by 

the characterization of firm-level AI innovation in Section 3.2 (especially the ranking of 

industries based on AI patents in Table 1). We credit USPTO (2020) for several of our 

illustrative examples. 

Unsurprisingly, AI is ubiquitous in the various technology industries. A highly visible 

example is the virtual assistant systems in consumer electronics produced by all the big 

technology firms. This includes Siri from Apple (e.g., USPTO patent number 10043516), which 

relies on speech recognition. AI hardware is also prominently produced and used in the industry 

itself. An example is IBM's device to improve computational efficiency modeled on the 

information processing structure of the biological brain (patent 8892487). 

Many non-technology industries are also prolific producers and users of AI technology. 

In transportation, the automated driving systems used in motor vehicles (both personal and 

commercial) by Toyota and other manufacturers (patent 8384776) are powered by "knowledge 

processing" AI technology. Similarly, Boeing and other major aircraft manufacturers have been 

equipping airplanes many decades ago with automated flying systems that are dynamically 

updated based on historical experience (patent 3987279). In communications, Sprint uses 

"planning and control" AI technology to assess and improve signal quality for its network (patent 

8140069). In drugs, Pfizer uses computer vision to both develop cancer treatments and to 

evaluate their performance on the body (patent 7231074). 

Less traditionally innovative industries are also active producers and users of AI 

technology. In oil and gas exploration and development, Chevron uses "evolutionary 

computation" AI technology to estimate reserves (patent 7657494). Delta and other airlines use 
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AI to forecast unscheduled component orders and labor for repairs (patent 7370001). AI 

production occurs in even less obvious industries. In consumer products, Coca-Cola uses 

machine learning to dynamically optimize the operation of its dispensing machines (patent 

4827426). Starbucks, among other mass market restaurants, uses AI to identify customers, 

predict their orders, and begin preparing them (patent 9218633). Overall, there is great diversity 

in the technologies captured by our sample of AI patents. 

3. Characterization of AI Innovation 

3.1. Aggregate AI Innovation 

We begin our empirical analysis with a simple characterization of AI innovation in the 

aggregate during the period 1990-2020. Our findings below demonstrate the significance of AI 

as a unique type of innovation as well as the importance of understanding AI production and its 

implication for firm value. 

First, we examine AI innovation activity, as captured by patent grants. Specifically, we 

measure innovation activity variously as: patent counts; the scientific value of patents, captured 

by the number of forward citations made to patents; and the commercial value of patents, 

captured by the estimates of the market value of patents made available by Kogan, Papanikolaou, 

Seru, and Stoffman (2017). 

[Insert Figure 1 about here] 

Figure 1 shows that AI is a prominent subset of all innovation activity. AI constitutes, 

very roughly, 5% of innovation activity in 1990. However, AI's share grows rapidly during the 

next three decades, accounting, by 2020, for over 15% of patents by number, 25% by scientific 

value, and 35% by commercial value. 
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Additionally, AI patents are also more valuable than non-AI patents, both scientifically 

and commercially. Even considering the rapid growth of patent counts, the value of the average 

AI patent is about 50% higher in 2020, both in terms of scientific and commercial value. By 

comparison, in 1990, the value premiums for scientific and commercial value are 200% and 

parity, respectively (relative value results not tabulated). 

[Insert Figure 2 about here] 

We also examine the rate of "breakthrough" innovations in AI versus non-AI technology. 

Specifically, we use the measure of, and data from, Kelly, Papanikolaou, Seru, and Taddy 

(2021), who use textual analysis to identify patent grants that are distinct from prior patents but 

related to subsequent patents (i.e., highly novel and also highly useful). The unconditional rate of 

breakthrough patents in our sample is roughly 12%. Figure 2 shows that, for AI patents, the 

breakthrough rate gradually decreased from around 60% during the 1990s, during the early years 

of AI technological development, to around 40% during the 2000s, and 25% during the early 

2010s. However, even in the most recent period, AI innovations are roughly four times as likely 

to be breakthroughs as non-AI innovations. 

[Insert Figure 3 about here] 

Second, we examine the diffusion of AI innovation throughout the economy. We would 

expect to see evidence of widespread diffusion over time from a general purpose technology 

such as AI. This is indeed what we find in Figure 3, whether we examine the production of AI 

innovation itself or of innovation that uses prior AI innovation. Panel A shows that, by 2020, at 

least half of all industries had AI patent grants that accounted for at least 10% of all patent grants 

in the industry. Even if we consider only industries with at least a majority of AI patents in all 

patent grants, AI innovation dominated almost 20% of all industries. 
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Similarly, Figure 3 Panel B shows widespread diffusion of innovation using prior AI 

innovation, as captured by backward citations of patent grants to prior AI patents. By 2020, 

about 75% of all industries have patents that build on prior AI technology, if we require at least 

10% of patent grants in the industry to cite a prior AI patent. Even if we require at least a 

majority of patent grants to cite prior AI patents, then prior AI technology is built upon by about 

30% of all industries. 

Finally, as a suggestive validity check, we compare AI and non-AI patents in terms of 

their "process innovation" content. Since AI is a labor enhancing technology, we would expect 

firms to produce AI innovations that improve the productivity of their operations or that of their 

customers. We can shed light on such innovation using data on the process intensity of patents 

from Bena and Simintzi (2025). A "process claim" represents an innovation in task performance, 

whereas a non-process claim represents other types of innovations, including but not limited to 

product innovations. We find that for AI patents, the share of process claims (relative to all 

claims) is roughly 50% on average, consistently during the past three decades. By contrast, for 

non-AI patents, the figure is only 30%. This is broadly consistent with AI patents focusing on 

improving task performance. 

3.2. Firm-Level AI Innovation 

[Insert Figure 4 about here] 

We examine the importance of publicly traded firms in AI innovation as compared to all 

patenting entities because publicly traded firms account for a large share of aggregate R&D 

spending and patent grants. Figure 4 shows that publicly traded firms dominate AI innovation. 

Relative to all patenting entities (not just firms), publicly traded U.S. firms consistently account 
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for almost half of all AI patent grants (roughly 45% during the past two decades), compared to 

only one quarter of non-AI patent grants during the past three decades (Panel A). 

Moreover, in the U.S., publicly traded firms, relative to all firms (rather than all patenting 

entities), account for an even greater share, close to two-thirds, of AI patents, compared to only 

55% of non-AI patents (Panel B). Furthermore, we can restrict our sample to innovative public 

firms, i.e., U.S. public firms with at least one patent, to calculate the share of firms that produce 

AI innovation, i.e., at least one AI patent. Figure 4 Panel C shows that the proportion of 

innovative public firms that also produce AI innovation has risen from roughly 15% in 1990 to 

about 45% in the past decade. 

In summary, publicly traded firms have historically, and continue today, to dominate the 

AI innovation. Additionally, innovative publicly traded firms increasingly include AI in their 

innovation activities. These findings motivate our focus on, and hence restriction of our sample 

to, U.S. publicly traded firms in the rest of the paper. 

We examine the sensibility of our measure of AI production. We rank industries, from 

greatest to least, based on their total number of AI patents. We capture industries using three-

digit SIC codes. We use all publicly traded firms in our baseline sample and all industries with at 

least 10 firms per year every year during our sample period. 

[Insert Table 1 about here] 

Table 1 shows a highly intuitive ranking of industries based on AI production. As one 

might expect, computer programming, electronic components, and computer equipment have the 

highest AI production. To illustrate the sensibility of our AI production measure, we rank firms 

based on average annual AI patent counts. The top 20 firms, tabulated in Appendix Table 3, are 

technology firms and widely known to be leaders in AI production. Meanwhile, Table 1 shows 



18 

that the lowest AI production is in operative builders, clothing stores, and equipment rentals. 

Importantly, however, even in the top quartile of industries, three of ten are not technology 

industries (aircrafts, motor vehicles, and drugs), and there are no technology industries in the 

second quartile (instead, e.g., assorted industries in petroleum and industrial equipment). 

Our ranking in Table 1 is also broadly similar if, instead of ranking based on the total 

number of AI patents, we eliminate the industry size effect by ranking based the mean number of 

patents per firm. Furthermore, we observe that in some industries, AI production is dominated by 

a few firms with a disproportionately higher level of AI production than their industry peers. For 

example, 70% of the AI patents in petroleum refining are owned by Exxon Mobil and Chevron, 

collectively. Therefore, we exclude from each industry the three firms with the highest number 

of AI patents, and then rank industries with the remaining firms based on the number of patents 

and the average number of patents per firm, respectively. The rankings are once again similar. 

Following the impression in Table 1 that AI producer firms tend to be big and old firms, 

we examine the size and age of AI producers to both firms that produce only non-AI innovation 

and also firms that do not produce any innovation. In every year during our sample period, AI 

producers are larger on average, twice as large or larger, whether we measure size using total 

assets, sales, or market capitalization (and even if we exclude the largest 10 or 20 firms in each 

group being compared). However, we do not find that AI producers are consistently and 

significantly older, on average.15 

                                                 
15 Additionally, we verify that our results throughout the paper are robust to excluding big technology firms. We 
classify firms as being in the technology industry using their SIC codes following Loughran and Ritter (2004). 
Variously sorting firms based on total assets, sales, and market capitalization, we exclude the largest 20 technology 
firms. These firms, in all sorts, account for about 60% of all AI patents in our sample. We find that our baseline 
results are similar if we exclude big technology firms from our sample. 
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4. Methodology 

4.1. Instrumentation of AI Production 

While AI patent grants are an observable and straightforward measure of AI innovation, 

using them directly to study their effects raises potential endogeneity concerns. For instance, 

while an increase in AI patent grants may lead investors to increase their appraisal of firm value, 

a firm that anticipates an otherwise unrelated increase in its future value may also be better able 

to finance its R&D spending and may receive more future AI patent grants. In addition to such 

cases of reverse causality, omitted factors can generate an observed correlation between AI 

patent grants and various corporate operational outcomes. In short, endogeneity makes OLS 

estimates unreliable. For this reason, we do not interpret or draw inferences from our OLS 

results. Nevertheless, we do tabulate all baseline results implemented as OLS regressions, as we 

discuss in Section 7. 

Our approach is to use an instrument that combines two key lagged components which, 

together, predict future corporate outcomes, resulting from current AI innovation and plausibly 

only through it. Our instrumental variable is the interaction of two components.16 Starting with 

the first component, in order to produce innovation (AI or non-AI), firms need to have sufficient 

innovation capacity to direct towards some specific technology such as AI. Empirically, firms 

with a larger stock of R&D capital are good candidates to invest in and successfully produce AI 

innovation. Second, the firm must have sufficient incentive to direct its innovation capacity 

towards AI technology. Since AI is a labor enhancing technology, in empirical terms, firms that 

are measurably more exposed to AI, through their own labor or that of their customers, are good 

candidates to produce AI innovation. We develop each of these two measures below. 

                                                 
16 Prior studies that use interaction instruments include: Chaney, Sraer, and Thesmar (2012); Adelino, Schoar, and 
Severino (2015); and Dreher, Fuchs, Parks, Strange, and Tierney (2021). 
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To measure the first component of our instrumental variable, we use the user cost of 

R&D, implied by time-varying federal and state R&D tax credits, to predict the R&D spending 

of firms from 1988 to 2015. Specifically, using a panel of firm-years, we predict R&D 

expenditures by regressing R&D expenditures on the firm's annual user cost of R&D along with 

firm and year fixed effects. We calculate the firm's R&D user cost as the weighted average of 

R&D user cost across the firm's R&D hubs, i.e., the states in which its inventors are located, 

during the previous 10 years. If the firm does not have any patents during this period, we 

calculate the firm's R&D user cost based on its headquarters location.17 We then capitalize 

predicted R&D expenditures for each firm during the previous 10 years at a depreciation rate of 

15%. This R&D capital stock is our measure of the firm's plausibly exogenous innovation 

capacity. Data on the user cost of R&D are from Bloom, Schankerman, and Van Reenen (2013), 

and our methodology is similar to that of Wilson (2009), Bloom et al. (2013), Hombert and 

Matray (2018), and Babina and Howell (2024). 

We then turn to the second component of our instrument, AI exposure. AI exposure refers 

to the potential of AI to substitute or complement labor. We measure "AI exposure" at the 

industry level by calculating the weighted average occupation-level AI exposure using as 

weights the occupational employment shares within the industry. Occupational AI exposures 

data are from Felten, Raj, and Seamans (2021), and occupational employment shares data are 

from the Bureau of Labor Statistics. We describe in detail the construction of occupational AI 

exposure scores in Appendix 2. Felten et al. (2021) validate their measure by studying job 

postings data (from Burning Glass Technologies). They find that occupational AI exposure 

predicts higher AI skill requirements in job postings for the corresponding occupation. Providing 

                                                 
17 Derrien, Kecskés, and Nguyen (2023) document that, for firms with available data on inventor location, roughly 
half of inventors are located in the same commuting zone as the firm's headquarters, with a predictably higher share 
located in the same state. 
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further validation, Acemoglu, Autor, Hazell, and Restrepo (2022) find that AI exposure 

aggregated to the establishment level predicts higher AI hiring. 

We measure a firm's AI exposure as its industry's labor's exposure to AI. Industries are 

captured using three-digit SIC codes. We fix employment weights in the 1988-1990 period, 

before the start of our sample period, to minimize the potential endogeneity of time-varying 

employment shares. These data first become available in 1988, and only one third of all 

industries (non-overlapping) are populated in each year during the first three years.18 We 

illustrate the sensibility of our AI exposure measure using the most dominant industry based on 

AI production (see Table 1): computer programming (SIC 737). Appendix Table 4 Panel A 

shows that the top 20 occupations, ranked by employment share, typically have high AI 

exposures, with an average exposure percentile of 93. 

To measure a firm's customers' AI exposure, we use the purchase share weighted average 

AI exposure of the firm's industry's customer industries. Specifically, for each industry, we 

obtain all customer industries from the Bureau of Economic Analysis industry input-output 

tables along with the product purchase share of each customer industry, i.e., how much of a 

given industry's products are sold to every possible customer industry. We then calculate, for 

each industry, the purchase share-weighted average of the AI exposures across customer 

industries. We again fix product purchase shares before our sample period, in 1987. As an 

illustration of our customer AI exposure measure, consider once again the most dominant 

industry based on AI production: computer programming (SIC 737). Appendix Table 4 Panel B 

shows that the top 20 customers of the computer programming industry, ranked by product 

                                                 
18 To examine the possibility of firms time-varyingly choosing their industry, and hence AI exposure, endogenously 
with firm outcomes, we use AI exposure based on industry fixed, alternatively, at the time of firms' first or last 
appearance in our sample. Our results are robust to both alternatives. 



22 

purchase share, are a diverse mix of industries. Computer programming itself has high AI 

exposure, but so do its typical customer industries, with an average exposure percentile of 97. 

We interact these two components – innovation capacity and AI exposure – to construct 

an interaction instrument. When R&D spending increases (because the user cost of R&D 

decreases as a result of time-varying federal and state R&D tax credits), firms with greater AI 

exposure (whether of their own labor or their customers') are more likely to produce AI 

innovation because such firms benefit more from the labor enhancement of AI technology. We 

lag our instrument by two years relative to AI patent counts to reflect the time it typically takes 

for patents to be granted. 

Since we can measure both the firm's own AI exposure and that of its customers, we 

construct two corresponding interaction instruments. We use both interaction instruments 

together in our baseline analyses because we have no theoretical reason to prefer one over the 

other, and we can increase the precision of our estimates by using both instruments together. 

However, we verify that our results are similar if we use each of our two interaction instruments 

separately. In all main analyses, we report the Hansen J-test for whether the estimated effects of 

AI patent counts are significantly different using each instrument separately. None of the 

differences is significant. Additionally, we tabulate all baseline results implemented using each 

instrument separately.19 As we discuss in Section 7, our estimates are similar in magnitude. 

Our identifying assumption is that firms with different AI exposures will only be affected 

differentially by changes in the (tax credit induced) R&D capital stock through the impact on AI 

innovation. To ensure that we identify exclusively off our interaction instrument, all regressions 

                                                 
19 See Atanasov and Black (2016) for a discussion of this approach, and Angrist and Evans (1998) for an applied 
example. 
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directly control for the components of the interaction, i.e., (tax credit induced) R&D capital stock 

as well as AI exposure. 

A fortiori, we include fixed effects for state-years based on the location of the firm's 

headquarters as well as fixed effects for three-digit SIC industries. This we do so that our results, 

more broadly, cannot be explained by potentially confounding factors. State-year fixed effects 

largely absorb R&D capital stock (because innovation activities are concentrated at firm 

headquarters), but they additionally absorb all commonalities across geographically proximate 

firms. Similarly, industry fixed effects entirely absorb AI exposure, but they also absorb all 

additional commonalities across firms competing in proximate product markets. 

4.2. Model Specification 

Our main analysis begins with examining stock returns for AI producer firms at the 

portfolio-month and firm-month level. Our analysis then proceeds to the firm-year level, where 

we regress corporate outcomes (such as cash flow levels) on instrumented AI patent counts. 

The first stage of our instrumental variable regressions is as follows: 

ln(0.1+AI_Patent_Countsi,SIC2,SIC3,s,t) = 

α1·R&D_Stocki,s,t-2 × Firm's_AI_ExposureSIC3 + 

α2·R&D_Stocki,s,t-2 × Customers'_AI_ExposureSIC3 + 

α3·R&D_Stocki,s,t-2 + β·Xi,t + δs,t + δSIC3 + δi + δSIC2,t (1) 

The AI patent counts predicted from the first stage are then used to explain outcomes in 

the second stage of our instrumental variable regressions: 

Outcomei,SIC2,SIC3,s,t+1 = α·ln(0.1+AI_Patent_Countsi,t) + 

β1·R&D_Stocki,s,t-2 + β2·Xi,t + δs,t + δSIC3 + δi + δSIC2,t (2) 
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In the equations above, i indexes firms, SIC2 and SIC3 index two-digit and three-digit 

SIC industries, respectively, s indexes the state of the firm's headquarters, and t indexes year. Xi,t 

is a vector of firm-level control variables. The parameters δi, δSIC2,t, δSIC3, and δs,t are fixed 

effects, respectively, for firms, two-digit SIC industry-years, three-digit SIC industries, and state-

years. Fixed effects for three-digit SIC industries completely absorb the direct effects of AI 

exposure (both the firm's and its customers'), so AI exposure is dropped. State-year fixed effects 

are based on the headquarters location of the firm. 

By way of justification, our baseline specification includes a battery of control variables 

and fixed effects to ensure that we identify exclusively off our interaction instrument and not its 

components. The components of our interaction instrument, which we use as control variables, 

we discuss in Section 4.1. A fortiori, we include fixed effects for state-years based on the 

location of the firm's headquarters as well as fixed effects for three-digit SIC industries. This we 

do so that our results, more broadly, cannot be explained by potentially confounding factors. 

State-year fixed effects largely absorb R&D capital stock (because innovation activities are 

concentrated at firm headquarters), but they additionally absorb all commonalities across 

geographically proximate firms. Similarly, industry fixed effects entirely absorb AI exposure, but 

they also absorb all additional commonalities across firms competing in proximate product 

markets. 

To further ensure that generic innovation is not driving our results, we control for the 

number of non-AI patent grants as well as an innovation dummy variable for whether the firm 

has at least one patent granted during the previous year. Additionally, we control for total assets 

and firm age to account for the possibility that larger and older firms are more likely to invest in 

and adopt advanced technologies. We also include firm fixed effects to rule out the possibility 
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that time-invariant differences across firms can explain our results. Finally, we include fixed 

effects for industry-years (using two-digit SIC industry) so that our results cannot be explained 

by time-varying industrial commonalities. 

Finally, in our baseline specification, we cluster standard errors by firm and also by 

industry-year (using two-digit SIC industry), since firms in similar lines of business tend to 

behave similarly. Before taking the logarithm of a variable that takes on zero values, we add a 

constant approximately equal to a small increment of the values of the variable. We indicate 

these constants in the corresponding results and/or Appendix Table 2. We verify that our results 

are robust to adding a constant at least one order of magnitude higher or lower. We add a smaller 

increment of 0.1 to AI patent counts before taking logarithms, rather than 1 as for non-AI patent 

counts, because firms have roughly one order of magnitude fewer AI patents than non-AI 

patents. To facilitate comparison across the two AI exposure (the firm's own and its customers'), 

we standardize them to mean zero and standard deviation one. We winsorize variables whenever 

appropriate at the 1st and 99th percentiles. 

4.3. Sample and Descriptive Statistics 

The firms in our sample are publicly traded U.S. operating firms excluding financials and 

utilities. The data on firms are from CRSP and Compustat. The sample period spans 1990-2017 

in terms of year t. We measure AI production using AI patent grants during the 12 months before 

each fiscal yearend. We start our sample period in 1990 because by then there is a critical mass 

of AI patent grants each year. We are also limited by the need for 10 years of patent data to 

construct the tax credit induced R&D stock, which requires inventor locations going back to at 

least 1978 (i.e., for R&D stock in 1988). 



26 

AI patent counts are measured in year t. They are instrumented with R&D stock 

measured at year t-2 and AI exposure fixed before the start of the sample period. Our data on 

federal and state user cost of R&D end in 2015, which is the last year we are able to calculate the 

(tax credit induced) R&D stock (and hence AI patent counts in 2017). Outcomes are measured in 

year t+1. Since we need Compustat data from years t-2 to t+1, we effectively require at least four 

years of Compustat data for each firm-year. Ultimately, the sample comprises 93,544 firm-year 

observations from 1990 to 2017 corresponding to 10,362 unique firms. 

[Insert Table 2 about here] 

Table 2 provides descriptive statistics for the variables used in this paper. Variables are 

defined in Appendix Table 2. In any given year, on average, 33% of firms have at least one 

patent grant of any kind, and 10% have at least one AI patent grant (not tabulated). In the 

average firm-year, AI patent counts are 0.66 compared to 6.5 for non-AI patents, a tenfold 

multiple. 

5. Motivation for Producing AI Innovation and First Stage of IV Regressions 

We begin our firm-level analysis by examining a potentially significant motivation for 

which firms produce AI innovation. Our underlying intuition is as follows. For some firms, their 

own labor (or their customers') is more substitutable for or complementable by AI technology. If 

such firms, with higher AI exposure, experience an exogenous increase in their innovation 

capacity, they will produce more AI innovation. At the same time, this intuition is also the 

econometric framework in subsequent analyses for our identification of the effect of producing 

AI innovation. This, the first stage of our instrumental variable regressions, is based on Equation 

1. 

[Insert Table 3 about here] 
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Table 3 Panel A presents the results for the regressions of actual AI production, measured 

by AI patent counts, on our instrumental variable, the interaction of R&D capital stock and AI 

exposure. Column 1 supports a mutually enforcing effect of the producer firm's innovation 

capacity, measured by its (tax credit induced) R&D capital stock, and its own AI exposure. 

Column 2 supports a similar effect, in economic magnitude and statistical significance, when the 

producer firm's AI exposure is replaced by its customers' AI exposure. 

We then combine the two related motivations for AI production by including both 

instruments in our specification. Panel A Column 3 shows that, overall, each instrument remains 

economically and statistically significant alongside the other. For a one standard deviation 

increase in each of the two mutually reinforcing incentives for a firm to produce AI innovation, 

i.e., (the logarithm of) R&D stock and both AI exposures (mean zero, standard deviation one), 

AI patent counts increase by 15% (=2.3(0.0241+0.0401)) relative to its mean. Alternatively 

viewed, this is the estimated magnitude of the reinforcing effect of AI exposure on a given 

change in R&D stock, and vice versa. We use the specification in Column 3 (both instruments 

together) in our baseline IV regressions. The results are stronger for the "customers instrument" 

than the "firm instrument".20 However, our second stage results in this paper do not depend 

critically on whether we use one instrument, the other, or both together. 

We examine the extent to which the results depend on any of the eight component 

technologies of AI. For firm-years with at least one AI patent, the average patent counts 

corresponding to each AI component technology is as follows (each AI patent can have multiple 

                                                 
20 This can happen if AI technology that enhances the firm's labor factor of production also enhances its customers' 
labor factor. As a test, we can mechanically remove the firm's AI exposure that overlaps its customers' AI exposure 
(since our input-output data indicate positive intra-industry product purchases for most industries), at the expense of 
a less accurate measure of customers' AI exposure. Specifically, we can exclude the firm's own industry from the list 
of customer industries before calculating the purchase share-weighted average AI exposure of the firm's customers. 
In this case, our coefficient estimate decrease in magnitude for the customers instrument, and it increases for the 
firm instrument (with the firm instrument's t-statistic rising to 2.2) (results not tabulated). 
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components): knowledge processing 3.43, speech recognition 0.17, AI hardware 2.01, 

evolutionary computation 0.16, natural language processing 0.35, machine learning 0.78, 

computer vision 1.21, and planning/control 3.45. For comparison, the average AI patent count 

for firm-years with non-zero AI patents is 6.5. For each AI component technology individually, 

we redo Table 3 Panel A (results not tabulated). We find similar results for the individual 

components compared to our baseline aggregation of all components, especially for the AI 

component technology with the largest share of AI patents. 

To calculate the typical variation in AI production induced by our interaction instrument, 

we start with our estimates in Table 3 Panel A. Let us fix the logarithm of R&D stock at its mean 

of roughly 2, and increase AI exposure by one unit (i.e., one standard deviation), for both the 

firm and its customers. This increases AI patent counts by roughly 13% 

(=2(0.0241+0.0401)) relative to its mean (Column 3), which we approximate as 10% for 

ease of interpretation. We use this figure throughout the paper to calculate the estimate effect of 

a typical change in our instrument on corporate outcomes of interest. 

Finally, we emphasize that we are interested in the amount of AI innovation produced by 

firms, so we use AI patent counts as our baseline measure. However, we also consider alternative 

variables for scaling AI patent counts. These scaling variables include total assets, total patent 

stock, total patent counts, and R&D stock (defined in Appendix Table 2). The results using these 

alternative scaling variables, tabulated in Table 3 Panel B through Panel E, are similar to using 

unscaled AI patent counts. 
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6. Value Implications of AI Production for the Producer Firm 

We examine the value implications of AI production for the producer firm using realized 

stock returns. We defer examination of the key drivers of value (i.e., cash flow levels and cash 

flow risk) to the next section. 

6.1. Initial Market Reaction to AI Patent Grants 

We begin by examining the initial market reaction to AI patent grants. Patent grants are 

generally announced by the USPTO once a week, on Tuesdays. We perform perhaps the simplest 

possible analysis: for every firm and patent grant date pair ("firm-date" hereafter), we calculate 

the market reaction for the firm-date during the week that starts with the patent grant date. Since 

there can be multiple patent grants for a given firm-date, we divide the market reaction by the 

number of patents. Thus far, we have not distinguished between different types of patents, but 

going forward we only consider the subset of AI patents. 

During the first week, the return for the average AI patent is about 1.2 basis points and 

about 6.4 bps for the average firm-date. During the first four weeks after the average firm-date, 

cumulative returns increase to roughly 33 bps, then to 73 bps after eight weeks, and to 117 bps 

after 12 weeks. However, this apparent return drift after patent grants is contaminated by 

overlapping events. Within one week of a firm-day with at least one AI patent grant, there is a 

roughly 50% chance of at least one AI patent grant within one week. Within four weeks, this 

probability rises to about 75%, and then to 85% within 12 weeks. Furthermore, each event-date 

with at least one patent grant (AI or non-AI) is contaminated by having a different number of AI 

and non-AI patents. 

Our only conclusion thus far is that the initial market reaction to AI patent 

announcements appears to be economically small compared to the subsequent return drift. 
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However, the statistical and economic problems with short-run returns after weekly patent grant 

announcements lead us to focus instead on long-run returns after a period of accumulating AI 

patent grants. Specifically, we count the number of AI patents for one year, and then we use 

them to predict returns during the following year. The first and most obvious benefit of this 

approach is better capturing the scale of the firm's AI innovation activities. With the exception of 

a few firms with big innovation programs, the presence or absence of a patent in a given week is 

likely to be a noisy measure of the years-long cycle for a given innovation program, let alone the 

multiple staggered innovation programs of a given firm. Second, a single patent granted one 

week is unlikely to capture the synergies across the firm's various innovation programs as well as 

its assets in place. Third, weekly patent grant announcements are persistent within firms, so 

multi-week event returns likely inflate the value of early patents by the initial market reaction to 

later patents, even if investors fully impound the value of a patent within one week of it grant 

announcement. Finally, a large literature suggests that corporate innovation activities tend to be 

undervalued by investors (e.g., Chan, Lakonishok, and Sougiannis (2001); Hirshleifer, Hsu, and 

Li (2013, 2018); and Cohen, Diether, and Malloy (2013)). If this is the case, then the initial 

market reaction to a patent grant likely underestimates its value to the firm. 

By accumulating AI patent grants over a year, we improve the statistical properties of our 

measure of AI innovation. If anything, we are still likely to underestimate long-run returns due to 

staleness of our one year accumulation of AI patent grants (at a minimum, we ignore the first 6-

18 months of post-announcement drift, depending on whether the patent was granted at the 

beginning or end of the year). However, our long-run approach allows to address potential 

confounds with control variables and fixed effects. Our approach also allows us to instrument for 
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AI production. Neither is possible for short-run returns after patent grant announcement events 

(because we do not have a daily frequency instrument). 

6.2. Returns on Portfolios Sorted by Actual AI Patent Counts 

We then examine the returns on portfolios formed based on actual AI patent grants, 

which are readily observable to investors. For every firm, for every calendar year, we count the 

number of AI patents granted during the 12 months ending in the month of the most recent fiscal 

yearend date. At the end of June of the following calendar year, we form portfolios based on AI 

patent counts. Therefore, we begin using returns with at least a six month lag (for firms with a 

Dec. fiscal yearend) and up to a 17 month lag (for firms with a Jan. fiscal yearend). These timing 

differences result from consistently using the same baseline sample construction throughout the 

paper.21 We hold portfolios from July through June of the following calendar year (12 months), 

at which point we rebalance. Since we observe AI patent grants from 1990 to 2017, we examine 

returns from July 1991 to June 2019, for a total of 336 monthly observations for each portfolio. 

We next describe our portfolio sorts, which effectively create a zero total (AI plus non-

AI) innovation group (Q0) and four quartiles based on AI patents (Q1 through Q4). Specifically, 

we sort firms into four quasi-quartiles (labeled as such because they contain an unequal number 

of firms): the group of zero AI patents ("zero AI"), and three groups of non-zero AI patent sorted 

into terciles ("low AI", Q2; "medium AI", Q3; and "high AI", Q4). Terciles (to construct groups 

Q2 through Q4) are recalculated every year at the time of portfolio formation. We are limited to 

sorting into these quasi-quartiles because only 10% or so of firm-years have non-zero AI patent 

counts. 

Within the group of firms with zero AI patents, we consider distinguishing between zero 

innovation and non-zero innovation firms as measured by total (AI plus non-AI) patents. This is 
                                                 
21 In our returns analysis, we drop stocks with negative book-to-market ratios and stocks with prices lower than $1. 
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because about two-thirds of our sample firms have zero total patents, and of the remainder, a 

large majority further has zero AI patents. Therefore, we further sort the zero AI patents quartile 

(defined as having zero AI patents) into two groups: zero total patents (Q0) and non-zero total 

patents (Q1). We thus have a total of five portfolios to examine. We also form hedge portfolios 

that long the high AI portfolio (Q4) and, variously, short the low AI portfolio (Q2) or either of 

the "zero AI" portfolios (Q1 and Q0). 

Our portfolios weightings are threefold: equally weighted, value weighted, and size 

neutral. We use the size neutral approach as our baseline to mitigate the correlation between our 

sorting variable, AI patent counts, and firm size. As the calculation of size neutral returns 

demonstrates, this approach balances the equally and value weighted approaches so that returns 

are neither driven by the smallest or the largest firms.22 We calculate size neutral returns, for any 

arbitrary portfolio, as follows. We sort stocks in the portfolio into small and large groups, 

independently, based on the NYSE median size breakpoint. We then value weight stocks within 

each group within the portfolio, and calculate value-weighted returns for the small group 

separately from the large group. Finally, we take the simple average of the returns of the small 

and large groups. This is the size neutral return for the particular portfolio. 

[Insert Table 4 about here] 

Table 4 presents the results of these time-series portfolio return regressions. We use the 

Fama and French (2015) five-factor model as our baseline, but the results are robust to using 

alternative factor models (Section 6.4). The results indicate that our baseline AI patent counts 

spread returns (Panel A), by about 50 basis points per month in our baseline size neutral 

specification, for AI patent counts moving from Q1 to Q4. We conservatively choose Q4-Q1 

                                                 
22 For other applications of this approach, see Griffin and Lemmon (2002); Hirshleifer, Hsu, and Li (2013); and Liu, 
Stambaugh, and Yuan (2019). 
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(high AI minus zero AI) as our baseline hedge portfolio. Compared to our baseline, spreads are 

somewhat lower when the short leg of the AI hedge portfolio is firms with low (but non-zero) AI 

patents (Q4-Q2). If the factor models that we use capture differences in systematic risk between 

non-zero innovation firms and zero innovation firms, then it is instructive to use zero innovation 

firms as the short leg of the AI hedge portfolio. In this case (Q4-Q0), spreads are somewhat 

higher than the baseline hedge portfolio (Q4-Q1). The results are similar if we use alternative 

scaling variables for AI patent counts (Panel B to Panel E). 

Additionally, we compare returns for AI patents to non-AI patents. Table 4 provides a 

direct comparison using the relative frequency of AI patents to non-AI patents (to be precise, AI 

patent counts divided by total patent counts). The results in Panel D are similar to the baseline 

results. 

As an alternative but less direct comparison of AI and non-AI, we redo Table 4 sorting 

firms based on their non-AI patents analogously to our AI patent sorts. The zero innovation 

group (Q0) is the same as for AI patents, and non-AI patent counts are sorted into four quartiles. 

Internet Appendix Table 1 presents the results. Comparing the baseline hedge portfolios 

excluding Panel D,23 the return spread is higher for AI patents than non-AI patents, with one 

exception, and is generally higher by 20 basis points per month or more. Comparing high AI 

(Q4) to high non-AI (Q4) portfolios, the return spread is even bigger and always positive. 

Moreover, while the AI spreads are reliable in economic and statistical significance, the non-AI 

spreads are only reliably positive and significant for non-AI patent counts scaled by total assets 

(Panel B). Taken as a whole, the results suggest that firms with observable higher AI production 

have higher risk-adjusted returns. 

                                                 
23 The similarities across the two Panel Ds demonstrate the comparability of the two tables since the non-AI sort is 
simply the reverse of the AI sort. 
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We also examine the factor loadings for our hedge portfolios in Table 4. We do not find 

consistent loadings on any of the factors in our baseline Fama and French (2015) five-factor 

model (not tabulated). The market factor loading is almost never significant. The size factor 

loading is occasionally significant, variously on small or big stocks. When the other factor 

loadings are significant, they tend to characterize the portfolios as growth (rather than value), 

weak profitability (rather than robust), and aggressive investment (rather than conservative). The 

only extent to which there is any consistency between Table 4 (sorts based on actual AI patent 

counts) and Table 5 (sorts based on R&D stock and AI exposure) is in the loadings on value and 

weak profitability. 

6.3. Returns on Portfolios Double Sorted by R&D Stock and AI Exposure 

Studying how AI patent grants spread returns has the advantage of using a simple and 

observable measure of AI production. However, the disadvantage is that AI patent grants are 

endogenous to corporate outcomes. For instance, while higher future returns may result from 

innovation output, investor anticipation of innovation output can lower financing costs and 

thereby further increase the success of innovation efforts. 

Motivated by our baseline IV framework, we also take the approach of examining the 

returns on portfolios formed based on the two components of our interaction instrument. Inspired 

by the reduced form of our IV regressions, we sort stocks into portfolios based on R&D stock 

and AI exposure, which allows us to identify the plausibly causal effect of these IV components 

on returns. Our approach is more complex than spreading returns with AI patent grants, but it can 

be implemented (information obtained and spreads traded) by sophisticated investors. At the 

same time, we are mindful of limitations of this quasi-reduced form approach, and we interpret 

the results suggestively. 
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Our reduced form approach is analogous to our previous approach. We consistently use 

the same baseline sample construction throughout the paper. We still use information that is 

available at the end of a given calendar year (year t), and we form portfolios at the end of June of 

the following calendar year (year t+1). However, instead of using information on actual AI 

patent counts (from year t) to form portfolios, we use information available on R&D stock and 

AI exposure. Since R&D stock is lagged by two years relative to AI production, it is measured in 

calendar year t-2. AI exposure is fixed before our sample period. 

We sort firms into three quasi-terciles (containing an unequal number of firms) based on 

(tax credit induced) R&D capital stock, the first component of our interaction instrument. These 

resulting groups contain zero R&D stock ("low R&D", L), and two halves of non-zero R&D 

stock ("medium R&D", M; and "high R&D", H) recalculated every year at the time of portfolio 

formation. Independently, we also sort firms into terciles based on AI exposure (T1 through T3), 

the second component of our interaction instrument, at the industry level. However, since "AI 

exposure" comprises the respective AI exposures of the firm and its customers, we need to 

combine them so that we can sort on a single exposure measure. We do so by taking their first 

principal component and using it as our measure of AI exposure in our baseline returns analyses. 

Our portfolios of interest are those at the intersection of the double sorts on R&D stock and AI 

exposure. 

[Insert Table 5 about here] 

Table 5 presents the results of portfolio return regressions implemented in a quasi-

reduced form setting. The Fama and French (2015) five-factor model is again the baseline, but 

the results are robust to alternatives (Section 6.4). Our interest is in the spread of the spread, and 

we interpret the results for our baseline size neutral portfolios (Panel C) as follows. We consider 
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R&D stock moving from low to high together with AI exposure moving from T1 to T3. The 

results for our baseline size neutral portfolios (Panel C) show that these changes result in higher 

returns of, very roughly, 50 basis points per month. 

We can also infer the AI patent counts corresponding to this return spread by using the 

results of Table 3. The coefficient estimate on the interaction instrument is approximately 0.06 

(Table 3). Let us consider the same increases in R&D stock (low to high, equal to roughly 5 units 

of ln(1+R&D stock)) and AI exposure (T1 to T3, equal to about 2 standard deviations) as above. 

Therefore, the increase in AI patent counts corresponding to a 50 bps/month increase in returns 

(Table 5 Panel C) is roughly 0.6 units of ln(0.1+AI patent counts), or a 60% increase relative to 

the mean (=0.0652).24 We are careful to interpret these results suggestively, and we are not 

comparing them directly to the returns results for AI patent counts (Table 4). However, these 

results do suggest that innovation capacity and AI exposure, both of which positively affect AI 

production (Table 3), result in higher risk-adjusted returns. 

Once again, we also examine the factor loadings for our hedge portfolios. In Table 5, the 

only consistent factor loading is growth (rather than value), and somewhat consistently weak 

profitability (rather than robust). This is, again, the only extent of consistency with Table 4. In 

Table 5, when significant, the market factor loading tends to be negative, and the size factor 

positive. The investment factor is never significant. 

6.4. Robustness Tests for Portfolio Returns Analyses 

We directly eliminate a potentially confounding correlation between AI and non-AI 

innovation in Fama-MacBeth regressions of monthly stock returns as well as panel regressions 

throughout the paper. We do so by controlling for various measures of innovation outputs (e.g., 

                                                 
24 Simply as a reference point, moving from T1 to T3 in Table 4 equals about 5 units of ln(0.1+AI patent counts). 
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non-AI patent counts) and inputs (e.g., R&D spending). It is not possible to be as rigorous in 

portfolio regressions. 

We also examine the robustness of our results with respect to alternative factor models 

proposed in the literature. As tabulated in Panel A through Panel E of both Internet Appendix 

Table 2 (c.f. Table 4 Panel A) and Internet Appendix Table 3 (c.f. Table 5), we find that the AI 

return spread remains economically and statistically significant in more demanding factor 

models, such as the Fama and French (2015) five-factor model with momentum and the Hou, 

Xue, and Zhang (2015) Q-factor model. In less demanding models, with fewer factors, the results 

are weaker, which suggests that AI portfolios have less systematic risk as captured by canonical 

risk factors. It would also be consistent with a firm's total risk being lower as a result of AI 

innovation (which we also document, in Section 7.2). 

Finally, using separately each of our two interaction instruments (i.e., based on the firm's 

AI exposure versus that of its customers), we redo Table 5 and Internet Appendix Table 3 (both 

double sorted by R&D stock and AI exposure). We find that our inferences are similar. 

6.5. Fama-MacBeth Cross-Sectional Return Regressions 

6.5.1. Fama-MacBeth OLS and IV in Year t+1 

We examine the effect of potentially confounding variables on our estimates of risk-

adjusted returns following AI production. We run Fama-MacBeth cross-section returns 

regressions using the same sample of firm-months that we use in our time-series returns 

analyses. We implement Fama-MacBeth regressions corresponding to both our portfolio 

regressions: sorted by actual AI patent counts (Table 4), and double sorted by (tax credit 

induced) R&D capital stock and AI exposure (Table 5) but implemented here using instrumented 

AI patent counts. Our explanatory variables of interest are actual and instrumented AI patent 
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counts in OLS and IV regressions, respectively. We use the respective AI exposures of the firm 

and its customers together as our baseline measure. 

Our OLS and IV implementations of Fama-MacBeth differ as follows. In OLS Fama-

MacBeth, we run cross-sectional regressions every month of returns on actual AI patent counts. 

In IV Fama-MacBeth, we first run cross-sectional regressions every month of actual AI patent 

counts on our instrumental variables, the interaction of R&D capital stock and each AI exposure 

measure. We also control for the components of our interaction instrument. We then run the 

second stage regression for the corresponding month, regressing returns on instrumented AI 

patent counts. The rest of the Fama-MacBeth procedure is the same for the OLS and IV 

implementations. 

Our battery of control variables includes non-AI patent counts and R&D spending. We 

also include our innovation dummy variable. We control for variables commonly used in the 

literature as well as our IV regressions: market capitalization, market-to-book of equity, 

momentum, short-term reversal, return on assets, capex-to-total assets, stock price, and firm age. 

As an alternative to unscaled non-AI patent counts and R&D spending, we also include these 

variables scaled by total assets. Finally, we include fixed effects for industries using the Fama 

and French 48 industry classification. 

[Insert Table 6 about here] 

Table 6 shows that, in our panel regressions, actual AI patent counts (OLS) are not 

consistently significant (Panel A). By contrast, instrumented AI patent counts (IV) are 

economically and statistically significant (Panel B).25 For a typical 19% increase in AI patent 

                                                 
25 In the first stage of the IV Fama-MacBeth regressions (not tabulated), for a one standard deviation increase in 
each of R&D stock and AI exposure, AI patent counts increase by 22% (=2.3(0.0291+0.0681)) relative to its 
mean). This compares to a 15% increase in Table 3 Panel A Column 3. 
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counts relative to its mean, returns increase by roughly 8 basis points per month.26 As before, this 

estimated magnitude can be viewed alternatively as the reinforcing effect of AI exposure on a 

given change in R&D stock, and vice versa. The results are similar if we use each of our two 

interaction instruments separately (Internet Appendix Table 4). 

Recognizing that the persistence of AI production within firms may be correlated with 

future returns, we additionally control for the mean monthly return during the previous 60 

months. This control variable serves as an estimate of the firm's expected future return during the 

following month. Once again, our results are similar. 

6.5.2. Fama-MacBeth IV in Year t+2 to Year t+5 

We also examine the duration of the effect of instrumented AI patent counts on returns. 

We use the same IV implementation of Fama-MacBeth as before. However, to ensure that we do 

not attribute future returns to future AI patent grants, we additionally control for the potentially 

confounding future AI patent grants (unscaled or variously scaled), e.g., during year t+1 for 

returns in year t+2, … , during year t+1 to year t+4 for returns in year t+5. We also control for AI 

patent stock during year t-10 to year t-1. 

Table 6 Panel C shows that returns are statistically significant until and including year 

t+3. For a typical increase in AI patent counts relative to its mean, returns increase by roughly 5-

6 basis points per month in year t+2, and then by 7-11 bps in year t+3. For AI patent counts, our 

baseline measure, returns are, respectively, 8, 6, and 7 basis points per month in year t+1 to year 

t+3, and thus about 7 bps/month over three years. Beyond that, however, the results become 

unreliable in terms of both economic and statistical significance. 

                                                 
26 For the IV Fama-MacBeth regressions, we calculate the typical variation in AI production induced by our 
interaction instrument analogously to our calculations for Table 3 Panel A Column 3 in Section 5. We fix the 
logarithm of R&D stock at its mean of roughly 2, and we increase AI exposure by its standard deviation, for both the 
firm and its customers. This increases AI patent counts by roughly 19% (=2(0.0291+0.0681)) relative to its 
mean. 
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6.6. Comparison of Magnitudes of Panel Returns and Portfolio Returns 

Finally, we compare the magnitudes of the returns estimated in the panel regressions in 

Table 6 and the corresponding portfolio regressions in Table 5. The calculations above for Table 

6, which use a one standard deviation increase in each of R&D stock and AI exposure, are unlike 

those in Table 5. In the latter, R&D stock increases from low to high, and AI exposure increases 

from T1 to T3. These changes in Table 5, converted to their equivalent magnitudes in Table 6, 

are roughly equal to 5 and 2 units of our R&D stock and AI exposure variables, respectively. 

Their effect is roughly a doubling of AI patent counts (=5(0.0292+0.0682)) in the first stage 

IV. Therefore, in the second stage IV (Table 6 Panel B Column 1), returns increase by roughly 

42 basis points per month (=0.4330.97). This is similar to the risk-adjusted returns in Table 5, 

even without remarking on the battery of control variables included in Table 6. 

7. The Effect of AI Production on the Key Drivers of Firm Value 

We argue that AI technology provides the firm with better information acquisition, 

forecasting, monitoring, decision making, execution, and responsiveness to changing business 

conditions. Consequently, producing AI innovation can increase firm value through both higher 

cash flow levels and lower cash flow risk. In the following empirical analysis, we use various 

measures of profitability and risk, and we regress them on instrumented AI patent counts. The 

second stage of our instrumental variable regressions is based on Equation 2. We address 

potential threats to identification, for both our profitability and risk analyses, in Section 7.3, and 

tabulate the results in Internet Appendix Table 5 and Internet Appendix Table 6, respectively. 

We summarize our collective inferences in Section 7.4. We conclude with analyses of the time-

varying effects of AI production and other clarifications. 
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7.1. The Effect of AI Production on Cash Flow Levels 

[Insert Table 7 about here] 

We measure profitability using return on assets. We find some evidence that AI 

production increases cash flow levels but only transitorily. Table 7 Panel A shows that a 10% 

increase in AI patent counts relative to its mean (i.e., a typical increase) increases return on 

assets by 0.7 percentage points, which corresponds to roughly 2.5% of the dependent variable's 

standard deviation. However, this effect in year t+1 decreases each successive year (roughly 

halving annually), and becomes insignificant by year t+2. 

By contrast, using endogenous (uninstrumented) AI patent counts, we find no significant 

effect of AI production on the cash flow levels or cash flow risk. Indeed, we redo all IV 

regressions implemented as OLS regressions, and tabulate the results in Internet Appendix Table 

7 through Internet Appendix Table 12 (corresponding to Table 7 through Table 13, respectively). 

In contrast to our IV estimates, our OLS estimates are generally much less significant, 

economically and statistically. 

Additionally, the Hansen J-test in Table 7 Panel A indicates the estimated effects of AI 

patent counts are not significantly different using each instrument separately except in year t+3. 

We also redo all IV regressions implemented using each instrument separately, and again 

tabulate the results in Internet Appendix Table 7 through Internet Appendix Table 12. Internet 

Appendix Table 7 shows that our IV estimates in year t+3 are not driven by the firm but rather its 

customers. 

For a variety of natural reasons, experience with AI production in the past may facilitate 

AI production in the future. For instance, large fixed production costs may lower the cost to 

firms of subsequent innovation activities. Alternatively, corporate knowledge gained from 
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already having commercialized existing innovations may increase the efficiency of bringing new 

innovations to market. We therefore explore the moderating role of experience on AI production. 

We measure AI experience using the firm's past AI patent stock. Mindful of the statistical 

limitations of cross-sectional contrast analyses, we use the predicted values from the regression 

of Table 3 Panel A Column 3 for instrumented AI patent counts. Its interaction with past AI 

patent stock is our variable of interest. We interpret contrast results as providing suggestive 

evidence. 

Table 7 Panel B shows that experience by itself does not have a significant effect. We 

further divide our experienced sample into low and high halves based on the median of AI patent 

stock counts as well as the patent stock ratio of AI patents to total patents. Table 7 shows, in 

Panel C and Panel D, that high experience does significantly further increase the effect of AI 

production on profitability, particularly when the firm's experience is measured not by AI patent 

grants by themselves but rather relative to non-AI patent grants (Panel D). The evidence suggests 

that some of the productivity potential of AI technology is being realized during our sample 

period, but only for firms with more experience producing AI innovation. 

7.2. The Effect of AI Production on Cash Flow Risk 

[Insert Table 8 about here] 

We first measure risk using the volatility of quarterly return on assets. Our findings 

suggest that AI production decreases cash flow risk. Table 8 Panel A shows that a 10% increase 

in AI patent counts relative to its mean decreases the volatility of return on assets by 7% relative 

to its mean. We also measure risk using the volatility of daily stock returns, and we find a 

confirmatory reduction of 2% relative to its mean. Similarly across both measures, the increase 

in AI patent counts corresponds to roughly 3%-5% of the respective dependent variable's 
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standard deviation. This effect in year t+1 decreases in year t+2, more so for return on assets than 

for stock volatility, but it remains highly economically and statistically significant. Indeed, we 

verify that the results are similar beyond year t+3 (not tabulated). 

We again also explore the moderating role of past experience with AI production 

facilitating future AI production (following the same procedure as in Section 7.1). We find that 

experience by itself does significantly further decrease the effect of AI production on risk, 

similarly from year t+1 to year t+3. However, high experience does not have a significantly 

different effect from low experience. 

We further examine the decrease in the total volatility of stock returns from Table 8, 

decomposing it into its systematic and idiosyncratic components. As we previously argued in 

Section 1, AI technology can decrease firm risk, for instance, by increasing internal control and 

external responsiveness. Such risk dampening effects of AI may materialize in a firm's response 

to the idiosyncratic or systematic shocks that it experiences. At the same time, as a general 

purpose technology, AI can create commonalities across firms in responding to business 

challenges, potentially increasing a firm's systematic risk. We explore which effect of AI 

dominates for systematic risk, and also the effect of AI on idiosyncratic risk, using the fitted and 

residual values from time-series returns regressions. We again use the Fama and French (2015) 

five-factor model as our baseline, as in Table 4 and Table 5. 

[Insert Table 9 about here] 

Table 9 shows that the permanent decrease in total stock return volatility is a consequence 

of both systematic and idiosyncratic risk decreasing permanently (Panel A and Panel B, 

respectively). A 10% increase in AI patent counts relative to its mean decreases systematic and 

idiosyncratic return volatilities by roughly 3% and 1.5%, respectively. The results are very 
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similar if we replace our baseline model with the CAPM or our alternative factor models, as in 

Internet Appendix Table 2 and Internet Appendix Table 3. 

Since the CAPM is characterized by a single source of systematic risk, we can 

parsimoniously quantify the decrease in market risk caused by AI production. We find that a 

10% increase in AI patent counts relative to its mean decreases the CAPM beta by about 0.035 

units (Panel C), or by roughly 4% of the mean of beta and 5% of its standard deviation. Overall, 

AI production appears to decreases risk, for cash flow as well as stock returns, and in the case of 

the latter, for both the systematic and idiosyncratic components of risk. 

7.3. Potential Threats to Identification 

Our identifying assumption, for the production of AI innovation, is that firms respond 

differently to random shocks to their innovation capacity because they have different AI 

exposures measured at the industry level. An important advantage of using time-invariant 

industry-level AI exposure, as we do, is that it minimizes the possibility of firms choosing their 

(firm-level) AI exposure endogenously with firm outcomes. However, it is possible that firms 

respond differently because of some differences across industries other than AI exposure, and 

these differences are correlated with AI exposure. We now address this possibility with 

specifications aimed at eliminating these omitted factors. However, the aggressiveness of these 

specifications also tends to eliminate much of the variation in our instrument. 

7.3.1. Arbitrary Confounds 

We begin by redoing Table 7 (profitability) and Table 8 (risk) adding industry-state fixed 

effects to capture the differential effect of R&D stock across industries that is specific to 

particular states within each industry. This eliminates, for instance, variation in R&D tax credits 

that apply differently to firms in different industries in different states – along with different 
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government policies, economic conditions, etc. that are specific to each industry-state pair. The 

Panel A results, in Internet Appendix Table 5 and Internet Appendix Table 6, are similar to our 

baseline results. This is the case even if we calculate R&D stock only using the firm's 

headquarters location and ignore all other R&D hubs of the firm (not tabulated). 

Next, we directly address the possibility that industry AI exposure, and hence the 

differential effect of R&D stock across industries, is potentially confounded with other 

differences across industries, by interacting industry fixed effects with R&D stock. Fixed effects 

for each value of R&D stock within each SIC3 industry would completely absorb all of the 

variation in our instrument. Instead, we add SIC3 industry times R&D stock quartile fixed 

effects, which absorb (incrementally to our baseline fixed effects) much of the differential effect 

of R&D stock across different industries. Alternatively, we add SIC2 industry times R&D stock 

decile fixed effects, which mechanically absorb less of the variation in our instrument across 

industries but more of its variation across R&D stock. In Panel B and Panel C of the two 

appendix tables, the profitability results become insignificant, but the risk results are similar. 

7.3.2. Automation and General Technology Confounds 

We then examine two specific omitted factors that may be potentially confounded with 

our AI exposure measure at the industry level: automation and general technology. Rather than 

only capturing AI exposure, our measure may also be capturing a firm's exposure to automation, 

or the general characteristic that the firm's operations are in the technology industry. It is 

noteworthy that AI technology is indeed a type of automation technology (i.e., of non-routine 

tasks). However, our AI exposure measure could capture exposure to both "AI automation" and 

"non-AI automation" (e.g., if all the corresponding non-routine and routine tasks, respectively, 

are not mutually exclusive). 
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We measure exposure to automation of routine tasks, using data from Zhang (2019), as 

the share of wages paid to workers in routine task occupations (following Autor and Dorn 

(2013)) averaged across the firms in each SIC3 industry in 1990 (i.e., at the same time as our AI 

exposure measure). We classify firms as being in the technology industry using SIC3 industries 

based on Loughran and Ritter (2004). We add to our baseline specifications each of these 

measures interacted with R&D stock. Both measures also capture part of the nature of AI 

technology (i.e., automation of labor produced by technology firms) with the same granularity as 

AI exposure (i.e., SIC3 industry). Nevertheless, the results in Panel D and Panel E are similar to 

our baseline results. 

As an alternative robustness test for the automation confound, we consider the possibility 

that AI innovation proxies for innovation in automation technologies. Specifically, we control for 

automation patents using data from Mann and Püttmann (2023), which are available from the 

beginning of our sample period until 2014. The results are similar to those in our baseline 

specifications (not tabulated). 

7.3.3. AI Adoption Confound 

We also consider the possibility that our results reflect the overall effect of the firm both 

producing and adopting AI technology. Specifically, our interaction instrument could not only 

affect AI production but also AI adoption, thereby violating the exclusion restriction. 

Conceptually, a firm's AI exposure should incentivize it to direct its innovation capacity to 

produce its own AI technology internally, but the firm could also be thus incentivized to acquire 

others' AI technology externally. AI scientists are an example of such a confounding factor: they 

are more likely to be employed by the firm because the firm has greater innovation capacity and 
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AI exposure (our interaction instrument), and they can potentially both produce more AI 

innovation and facilitate the firm's adoption of AI technology. 

We examine whether the production of AI innovation proxies for AI adoption by 

controlling for AI adoption using data from Babina, Fedyk, He, and Hodson (2024a). Their AI 

adoption measures are arguably the most comprehensive available. These measures comprise a 

primary, resumes-based measure (from Cognism), and a secondary, job postings-based measure 

(from Burning Glass). Data for both AI adoption measures are available until the end of our 

sample period, but they are available beginning in 2005 for the primary measure and beginning 

in 2007 for the secondary measure (but missing for 2008-2009). 

We merge our sample with Babina et al.'s and keep only firms common to both samples: 

about 6,000 and 4,000 firms, respectively, for their primary and secondary measures. For each 

firm, we linearly interpolate between a value of zero in 1990 and Babina et al.'s actual value for 

the firm's first year in their sample (and we also linearly interpolate between 2007 and 2010 for 

their secondary measure). We choose an initial value of zero because, expectedly, Babina et al.'s 

initial values are overwhelming zero (roughly 90% for their primary measure, and 60% for their 

secondary measure, rising to 70% if we include minuscule values (less than 0.01%) of the AI 

share of employees). Indeed, these figures are very similar to the values in the first year of 

Babina et al.'s sample (2005 and 2007 for their primary and secondary measures, respectively). 

We find that Babina et al.'s measures have correlations of approximately 0.3 with our AI 

production measure (for both measures), which suggests that there is a meaningful distinction 

between producers and adopters. As for our main corporate outcomes, Panel F shows that the 

results are similar to our baseline results. We tabulate the results for the primary, resumes-based 

measure of adoption, but we find similar results for the secondary, job postings-based measure. 
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As for systematic risk, there is an opposite effect on CAPM beta between the production 

of AI innovation and the adoption of AI technology. We find that AI production decreases beta 

(Table 9), consistent with our argument that producing AI improves the reliability of the firm's 

execution and its responsiveness to changing business conditions. By contrast, Babina, Fedyk, 

He, and Hodson (2024b) find that AI adoption increases beta, which is consistent with their 

arguments that adopting AI can increase the firm's fragility during bad economic conditions 

(because of shared datasets, models, and technological infrastructure) even as it increases the 

firm's growth opportunities during good economic conditions, increasing beta on both the 

downside and upside. 

7.3.4. Slow Moving Arbitrary Confounds 

Finally, potential omitted factors that are correlated with the differential effect of R&D 

stock across industries may have a slow moving component (e.g., high AI innovation firms may 

have persistently high risk). To capture this component at the firm-year level, we add to our 

baseline specifications lagged dependent variables, which will also capture this same slow 

moving component of our instrument. It is worth noting that such specifications (with firm fixed 

effects and lagged dependent variables) are not only demanding but are subject to a Nickell 

(1981) bias that may seriously attenuate our estimates. Panel G in each of the two appendix 

tables shows that once again the profitability results become insignificant, but the risk results are 

similar to our baseline. 

7.4. Collective Inferences from the Returns, Cash Flow Levels, and Cash Flow Risk Analyses 

To summarize our main results, producing AI innovation causes large but transitory 

positive abnormal future stock returns (for roughly three years), a small and transitory increase in 

profits (for roughly one year), and a large and permanent decrease in risk. The transitory higher 
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future returns suggest that the permanent decrease in risk is not immediately and completely 

reflected in stock prices by investors. 

7.5. Time-Varying Effects of AI Production 

We consider the evolution, during the past three decades, of the effect of producing AI 

innovation. The proliferation of AI technology might suggest that producing AI innovation in 

recent years would be even more profitable and less risky for firms, and more efficiently priced 

by investors. However, many economic forces can give rise to time trends. For instance, with the 

significant and growing scale of AI innovation and its diffusion across industries, the returns to 

AI innovation may decrease as it becomes increasingly competitive to make important 

technological breakthroughs. At the same time, increasing scale may increase technological 

agglomeration effects, allowing one firm's innovation activities to benefit from those of other 

firms, thus increasing returns to AI innovation. Indeed, opposing trends such as these may 

roughly balance each other out. 

We therefore examine our stock returns, profitability, and risk results over time. We do 

not find significant temporal differences in future stock returns during our sample period. This 

suggests that investors, in spite of their increasing interest in AI in recent years, have not become 

better at anticipating the firm value resulting from AI innovation. Similarly, profitability is not 

significantly different over time. However, we do find a small incremental risk decreasing effect 

of AI innovation during the second half of our sample period (not tabulated). This would be 

consistent with technological agglomeration dominating technological competition over time, 

decreasing firm risk more markedly as a result of AI innovation. 
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7.6. Patent Quality 

Mindful that patents are heterogeneous in terms of quality, we examine our results for 

higher versus lower quality patents. It is well known that many patents are filed for innovations 

produced in the normal course of the R&D process but are of low quality because their small 

expected future value (e.g., from preserving their optionality) exceeds their relatively small 

incremental filing costs. Filing low quality patents may also keep the inventors working for a 

firm motivated, by fostering competition among inventors or improving individual career 

prospects with innovations that are valuable to the individual inventor even if they are low value 

to the firm. Many low quality patents are also filed because a critical mass of overlapping 

intellectual property claims can provide a firm with protection against patent litigation. 

We capture the quality of patents standardly, using their scientific and commercial value 

(as in Section 3.1). We classify AI patents as high versus low quality based on their value 

relative to the median value of all AI patents in the same year. We redo Table 6 (Fama-MacBeth 

returns) Panel B, Table 7 (profitability) Panel A, and Table 8 (risk) Panel A, replacing (total) AI 

patents with high quality AI patents and controlling for low quality AI patents. The results (not 

tabulated) are roughly twice the magnitude for high quality AI patents, compared to our baseline 

results for total AI patents, using the median to classify patents into high versus low quality, and 

even larger if we use higher thresholds for classification. The results are also similar using 

alternative scaling variables for AI patent counts. Only when using commercial value to capture 

quality and only for stock returns, the magnitudes for high quality AI patents are not as large (but 

still larger than for total AI patents), but this is consistent with estimating future returns for firms 

that, by construction, have patents with higher initial returns. Overall, the evidence on higher 

quality patents supports the firm value hypothesis of AI production. 
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7.7. Novelty of AI Technology 

Since AI technology is in the early stages of diffusion at the beginning of our sample 

period, we examine whether our results are affected by the novelty of AI technology. Although 

we find minimal time-varying effects of AI production (Section 7.5), we do find that AI patents 

are several times more likely to be breakthrough innovations than non-AI patents (Figure 2). We 

again use the measure and data of Kelly, Papanikolaou, Seru, and Taddy (2021), and we again 

redo Table 6 Panel B, Table 7 Panel A, and Table 8 Panel A, controlling for breakthrough 

patents. The results are similar to those in our baseline specifications (not tabulated). 

8. Mechanisms 

We investigate possible mechanisms underlying the effect of AI production on the value 

of the producer firm: labor productivity, physical capital intensity, and bargaining power. These 

mechanisms can directly improve the producer firm's operations (e.g., increase its labor 

productivity), through its AI production, motivated by its own AI exposure, most naturally 

decreasing costs (especially labor costs) but also increasing its sales. However, they can also 

indirectly affect the producer firm, motivated by its customers' AI exposure. Specifically, if the 

AI innovation motivated by customers' AI exposure allows the producer firm better satisfy 

demand (e.g., improve measurement, detection, response, etc.), then this lowers the costs of the 

producer firm's operations (e.g., increase labor output relative to input) and thus increases the 

firm's profits (separately from any effect of AI on sales). In this way, the producer firm can 

negotiate more lucrative business deals for itself, but it can also negotiate deals that are more 

stable, and thus increase profitability or decrease risk. While we frame our exposition of the 

mechanisms below in terms of the direct effect of producer firm's AI exposure on itself, for 
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brevity, the abovementioned indirect effect of customers' AI exposure can also result in 

analogous effects. We therefore consider both exposures here, as in all of our analyses. 

8.1. Labor Productivity 

As a labor enhancing technology, AI can increase the productivity of the producer firm's 

operations by improving labor productivity. AI augments earlier automation technologies by 

automating cognitive tasks that depend on human sensory and decision making abilities. 

Therefore, even compared to earlier automation technologies, AI can significantly substitute or 

complement jobs or even entire occupations. 

[Insert Table 10 about here] 

We first examine labor productivity, which we capture using profit per employee. Table 

10 shows that profit per employee increases by roughly $7,500 as a result of a 10% increase in 

AI patent counts relative to its mean. This corresponds to about 3% of the standard deviation of 

profit per employee (which is roughly $250,000). However, this first year effect for labor 

productivity, like for profitability (net income to total assets), becomes insignificant by the 

second year (not tabulated). Therefore, the labor productivity effect is transitory. 

We also examine the producer firm's level of employment. However, the effect of AI 

production here is unclear. If AI is, on balance, a substitute for labor, then employment will 

decrease. However, if AI complements labor on balance, making existing workers more 

productive as they work with AI technology, or allowing the firm to hire workers who produce 

more than they cost thanks to AI technology, then employment will increase. 

We find no effect of AI production on the level of employment based on our results in 

Table 10. Nor do we find any effect on the overall scale of the producer firm, as measured by 
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total assets. While we have no evidence of AI production hurting employment to date, neither do 

we find that it helps. 

8.2. Capital Intensity 

AI technology allows firms to improve the automation and planning of their operations. 

For instance, it can reduce the need to maintain spare production capacity (not only labor but 

also capital) and inventory for episodes of surging customer demand. In so doing, AI enables 

firms to reduce their investment in and maintenance of capital required for development as well 

as production. 

[Insert Table 11 about here] 

We therefore examine the capital intensity of AI producer firms along various 

dimensions. Table 11 shows that firms generally become less capital intensive as a result of AI 

production. A 10% increase in AI patent counts decreases property, plant, and equipment by 

roughly 2.5% relative to its mean. Additionally, and consistent with AI improving planning, we 

find that inventory decreases by about 3.5% relative to its mean. These magnitudes correspond to 

about 2% of the respective dependent variable's standard deviation. 

Additionally, we examine the investment of firms and find that it decreases as a result of 

AI production. Table 11 shows that capex and R&D spending, decrease by roughly 4% and 7% 

relative to their means, respectively, corresponding to about 3% of their respective standard 

deviations. By contrast, acquisitions expenditures increase by about 3.5%, corresponding to 

roughly 2% of its standard deviation. This suggests that AI technology allows firms to shift some 

of their investment focus from inside the firm to outside of it. The results for capital intensity are 

permanent, being generally similar for five years in economic and statistical significance (not 

tabulated). 
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8.3. Producer Firm Bargaining Power 

In the course of producing AI innovation that can subsequently be commercialized, AI 

producer firms can also improve their bargaining power vis-à-vis their business counterparties. 

This can not only increase the spread between the firm's production outputs and inputs (i.e., 

increase profitability) but also their stability (i.e., decrease risk). Let us elaborate, starting with 

customers. Products that embed the producer firm's AI technology, or services integrating its AI 

technology with its customers' operations, can make it costly for customers to shift their business 

away from the AI producer firm. Similarly, as a safer customer for its suppliers, the AI producer 

itself may be able to command more reliable, or otherwise better or cheaper, products from its 

suppliers. Turning to employees, the threat of substitution from AI increases the firm's 

bargaining power relative to labor, which can allow the firm to lower its labor costs and also to 

increase its operating flexibility. The latter is particularly valuable in adverse business conditions 

during which flexibility may be much improved by actually substituting AI for labor. Overall, an 

AI producer can be more profitable for doing business with, and more costly to switch away 

from, for its counterparties. At the same time, the greater stability of the AI producer is 

beneficial both for the firm itself and each of its counterparties. 

[Insert Table 12 about here] 

In light of the difficulty of measuring bargaining power directly (even more so for 

business stability than lucrativity), we instead use measures of the stability of the firm's output 

and input relationships. We find that both increase as a result of AI production. Starting with 

outputs, Table 12 shows that the volatility of quarterly sales decreases by about 3.5% relative to 

its mean as a result of a 10% increase in AI patent counts. Also evidencing a more stable 

relationship between the firm and its customers, product differentiation (vis-à-vis product market 
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competitors) also increases. Specifically, the Hoberg and Phillips (2016) similarity score, 

converted to a differentiation, increases by about 5 percentage points. 

Proceeding to inputs, Table 12 shows that the volatility of total costs of production 

decreases by about 3.5% relative to its mean as a result of a 10% increase in AI patent counts. If 

we break total costs down into their constituent SG&A and COGS, we find that their volatilities 

decrease by roughly 2.5% and 3%, respectively. Consistently across all of the regressions in 

Table 12, the estimated magnitudes correspond to about 2-3% of the respective dependent 

variable's standard deviation. The results for bargaining power are also permanent, with similar 

statistical significance for five years and somewhat smaller economic magnitude (not tabulated). 

9. Financing Implications of AI Production 

Having documented that AI producer firms have higher cash flows and lower cash flow 

risk, we turn to the financing implications of AI production. As a consequence of the effect of AI 

production on both of these key value drivers, we would expect AI producers to choose more 

aggressive financial structures. For instance, firms would be incentivized to shield from taxation 

their higher profits by increasing their leverage. Firms lower financial distress costs resulting 

from lower risk would similarly motivate them to increase their leverage. 

[Insert Table 13 about here] 

Table 13 shows that subsequent to a 10% increase in AI patent counts, AI producers 

increase their leverage by about 3% relative to its mean. Similarly, and also consistent with 

lower precautionary motives for holding cash, the same variation in AI patent counts lowers cash 

holdings by about 2.5%. We further investigate the components of the change in leverage to 

better understand how firms react. We find that net debt issuance increases by roughly 2 

percentage points, while equity issuance decreases by roughly 0.8 p.p., even as share repurchases 
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remain unchanged. These financing results are also similar for several years (not tabulated). 

Overall, AI production appears to increase financial structure aggressiveness. 

10. Conclusion 

We document that AI innovation is a prominent form of innovation with widespread 

applications across different product markets and technology fields. Publicly traded firms 

dominate the AI production in the economy, and an increasingly high share of innovative 

publicly traded firms produce AI innovation. We argue that AI production increases firm value 

for the producer firm, by increasing cash flow levels and decreasing cash flow risk. 

In our causal examination of the implications of AI production, we use an instrumental 

variable that exploits the interaction between the producer firm's plausibly exogenous innovation 

capacity and AI exposure driven incentives to produce AI innovation. We argue and find that 

firms produce AI innovation motivated by both their own AI exposure as well as that of their 

customers. Moreover, AI production causes transitorily higher profitability and permanently 

lower risk. Furthermore, AI producers have persistently higher future abnormal stock returns for 

roughly three years, which suggests that investors underestimate the firm value increasing effects 

of AI innovation. Additionally, we document mechanisms through which AI production affects 

firm value, including decreased physical capital intensity and increased bargaining power. 

Taken together, our findings help inform corporate managers, capital providers, and 

policy makers who increasingly need to evaluate investment opportunities to develop and deploy 

AI technology. Producing AI innovation has been value enhancing for producer firms across 

several operational dimensions, during most of the past three decades. 
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Appendix 1 

Details of the Classification of Patents as AI versus Non-AI 

We describe here the key details of Giczy, Pairolero, and Toole (2022)'s machine 

learning approach for classifying patents as AI versus non-AI. As a starting point, AI is broken 

down into eight AI component technologies, and the universe of patent documents is evaluated 

for AI content pertaining to each of the eight components. These components are defined so as to 

be implementable in patent-level analysis and are motivated by the National Institute of 

Standards and Technology's definition of AI technology: "software and/or hardware that can 

learn to solve complex problems, make predictions or undertake tasks that require human-like 

sensing (such as vision, speech, and touch), perception, cognition, planning, learning, 

communication, or physical action" (NIST (2019)). 

The eight AI component technologies are knowledge processing, speech recognition, AI 

hardware, evolutionary computation, natural language processing, machine learning, computer 

vision, and planning/control. These components are not mutually exclusive. For instance, an 

invention in any one of the components is likely to also exploit machine learning models. The 

identification algorithm then focuses on each of these eight AI component technologies 

separately, until, for each component, all patents are assigned a predicted probability of being AI. 

To train a machine learning model to identify a patent as AI or non-AI, it is necessary to 

have one set of patents that are "surely AI" and another set that are "surely non-AI". The set of 

"surely AI" patents is identified by intersecting four patent classification systems: CPC, IPC, 

USPC, and Derwent World Patent Index. Each of these systems has its own set of patent classes 

that allow categorization of every patent as AI or non-AI according to each of the 

aforementioned eight AI component technologies. Giczy et al. deem a patent to be "surely AI" if 
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all four patent classification systems agree that the patent belongs to the specific AI component 

technology under consideration.28 

Having thus identified the training set of "surely AI" patents, the next step is to identify 

the set of "surely non-AI" patents. This begins by excluding the set of "surely AI" patents. 

However, some of the patents that remain may be related to AI. These patents are identified for 

exclusion in two independent procedures as follows. In the first procedure, patents are excluded 

if they share a patent family with any patent in the set of "surely AI" patents, and their backward 

and forward citations are also excluded.29 This step is repeated a second time, but this time the 

basis of exclusion is sharing a patent family with any patent excluded in the first step (as 

opposed to the set of "surely AI" patents). In the second procedure, patents are excluded if they 

belong to a CPC patent class that has an abnormally high share of "surely AI" patents 

(specifically, if the class' share of "surely AI" patents is more than 50 times the class' share of the 

universe of patents). The final step in creating the training set of "surely non-AI" patents is to 

randomly select 15,000 of the patents that remain after the foregoing exclusions. 

A machine learning model is then trained on the abstract, claims, and citations of the 

"surely AI" and "surely non-AI" patents. After training, the model subsequently evaluates all 

patent documents (i.e., not just those of "surely AI" and "surely non-AI" training sets) for their 

AI content. All patents are thus assigned a predicted probability of containing a particular AI 

component technology. Finally, if any of the predicted probabilities exceed 0.5 for any of the 

eight AI component technologies, the patent is classified as an AI patent. 

                                                 
28 For example, to identify the "surely AI" set of patents for computer vision, the following is a list of the patent 
classes that are intersected from the four patent classification systems. From CPC/IPC: G06K9 (recognition of 
characters or patterns), G06T3 (image transformation), G06T5 (image enhancement/ restoration), and G06T7 (image 
analysis). From USPC: 382 (image analysis). From Derwent: T01-J10B (Image Processing), T04-D (Character and 
signal pattern recognition), and T01-J16 (artificial intelligence). 
29 A patent family is a group of patent applications and/or granted patents that share a common applicant/owner and 
share a similar inventive concept. 
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Appendix 2 

Details of the Construction of Occupational AI Exposure Scores 

The AI exposure of an occupation is the extent to which AI can be used to substitute or 

complement labor in that occupation, and the measure that we use reflects this agnosticism about 

the effect of AI on labor. Felten, Raj, and Seamans (2021) measure occupational AI exposure 

starting with estimating the AI exposure of all 52 "workspace abilities" in the Department of 

Labor O*NET database. These abilities simply describe the skills required to perform the tasks 

involved in various occupations. O*NET scores each ability, within each occupation, on its 

relevance and importance (e.g., surgeons receive high scores for arm-hand steadiness and 

deductive reasoning). 

Felten, Raj, and Seamans (2021) conduct a crowd sourced survey via Amazon's mTurk 

asking respondents if a specified O*NET ability "is related to or can use AI" in 10 "AI 

applications" defined by the Electronic Frontier Foundation.30 Survey responses (zero-one / no-

yes) are averaged within each of 520 ability-application pairs (52×10). Then, within each of 52 

O*NET workspace abilities, the survey average AI application scores are summed up, resulting 

in an AI application score for each workspace ability. Finally, the total AI application scores for 

O*NET workspace abilities are calculated as a weighted average across each O*NET 

occupation. The weights used are the initially mentioned O*NET scores for the relevance and 

importance of each workspace ability specific to the occupation. The final occupational scores 

are standardized (mean zero, standard deviation one). 

                                                 
30 This focus is chosen for the sake of concreteness and precision of survey responses. The EFF is a digital rights 
and privacy non-profit that collects statistics about the progress of AI across its applications. The 10 selected AI 
applications are those for which the EFF has recorded scientific activity since 2010. The applications comprise: 
abstract strategy games, real-time video games, image recognition, visual question answering, image generation, 
reading comprehension, language modeling, translation, speech recognition, and instrumental track recognition. 
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Table 1 
Industry Ranking Based on AI Production 

 
This table shows the ranking of industries based on their AI production. The sample is all firms in the baseline sample restricted to industries with at least 10 
firms per year every year during the sample period. The number of firms in an industry is the annual average number of firms. The number of AI patents is the 
annual average of the total number of AI patents granted to firms in the industry. The three most AI innovative firms in an industry are the three firms with the 
highest number of AI patents. 
 

All firms 
Excl. three most AI 

innovative firms 
Rank: 

Industry 
total AI 
patents 

SIC3 Industry name 
Number 
of firms 

Number 
of AI 

patents 

Rank: 
Mean AI 
patents 
per firm 

Rank: 
Industry 
total AI 
patents 

Rank: 
Mean AI 
patents 
per firm 

1 737 Computer programming, data processing, and other computer related 312.5 400.14 6 1 3 
2 367 Electronic components and accessories 139.9 226.57 3 3 2 
3 357 Computer and office equipment 113.9 222.71 2 2 1 
4 382 Laboratory apparatus and analytical, optical, measuring, and control 98.4 100.61 8 4 5 
5 366 Communications equipment 92.5 87.04 7 5 6 
6 384 Surgical, medical, and dental instruments and supplies 139.1 74.39 13 6 8 
7 481 Telephone communications 45.8 58.25 4 7 7 
8 372 Aircraft and parts 20.5 52.36 1 9 4 
9 371 Motor vehicles and motor vehicle equipment 45.5 45.89 9 10 10 

10 283 Drugs 271.4 38.89 23 8 14 
11 291 Petroleum refining 19.5 24.93 5 11 9 
12 353 Construction, mining, and materials handling machinery and equipment 24.5 20.50 10 19 18 
13 355 Special industry machinery, except metalworking machinery 36.1 18.89 12 12 11 
14 362 Electrical industrial apparatus 18.8 15.36 11 18 17 
15 596 Non-store retailers 28.3 11.50 14 20 20 
16 138 Oil and gas field services 30.4 11.36 15 22 21 
17 873 Research, development, and testing services 39.4 7.21 20 13 13 

18 284 
Soap, detergents, and cleaning preparations; perfumes, cosmetics, and other 
toilet preparations 

22.6 6.39 16 31 27 

19 421 Trucking and courier services, except air 28.4 5.96 17 36 39 
20 738 Miscellaneous business services 37.7 5.36 19 15 16 
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21 369 Miscellaneous electrical machinery, equipment, and supplies 20.8 5.21 18 14 12 
22 799 Miscellaneous amusement and recreation services 29.5 4.68 22 24 24 
23 483 Radio and television broadcasting stations 25.6 4.57 21 16 15 
24 356 General industrial machinery and equipment 39.7 3.93 26 17 19 
25 874 Management and public relations services 25.1 2.68 24 23 22 
26 504 Professional and commercial equipment and supplies 30.8 1.68 30 21 23 
27 208 Beverages 18.9 1.57 28 33 34 
28 451 Air transportation, scheduled, and air courier services 20.0 1.57 27 29 29 
29 506 Electrical goods 22.6 1.57 25 30 30 
30 281 Industrial inorganic chemicals 16.5 1.50 28 27 29 
31 131 Crude petroleum and natural gas 98.5 1.39 35 25 32 
32 871 Engineering, architectural, and surveying services 18.9 0.75 34 26 31 
33 308 Miscellaneous plastics products 29.3 0.64 33 28 25 
34 581 Eating and drinking places 69.0 0.64 37 39 33 
35 495 Sanitary services 24.9 0.61 31 33 40 
36 594 Miscellaneous shopping goods stores 21.9 0.46 32 32 26 
37 809 Miscellaneous health and allied services, not elsewhere classified 18.1 0.25 36 34 34 
38 736 Personnel supply services 26.8 0.21 38 40 42 
39 331 Steel works, blast furnaces, and rolling and finishing mills 27.3 0.14 39 41 38 
40 735 Miscellaneous equipment rental and leasing 15.8 0.07 40 38 35 
41 153 Operative builders 23.0 0.04 40 37 33 
42 565 Family clothing stores 15.5 0.04 41 39 38 
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Table 2 
Descriptive Statistics 

 
This table presents descriptive statistics for the main variables used in this paper. Variables are defined in Appendix 
Table 2. 
 

 Mean 
Standard 
deviation 

25th 
percentile 

Median 
75th 

percentile 
Independent variables      
 - AI patent counts 0.66 3.46 0.00 0.00 0.00 
 - Non-AI patent counts 6.5 26.8 0.0 0.0 1.0 
 - R&D stock [tax credit induced] ($ M) 127.3 491.0 0.0 1.9 40.2 
 - Firm's AI exposure 1.23 0.47 0.87 1.21 1.54 
 - Customers' AI exposure 1.14 0.36 0.85 1.14 1.37 
 - Total assets ($ M) 2,313 6,832 62 261 1,208 
 - Firm age (years) 15 15 4 10 21 
 - Innovation dummy variable 0.33 0.47 0.00 0.00 1.00 
      

AI patent counts with alternative scaling      
 - AI patent counts / Total assets (per $ B) 0.62 3.12 0.00 0.00 0.00 
 - AI patent counts / Total patent stock (%) 1.09 5.47 0.00 0.00 0.00 
 - AI patent counts / Total patent counts (%) 3.60 15.33 0.00 0.00 0.00 
 - AI patent counts / R&D stock (per $ B) 1.43 6.64 0.00 0.00 0.00 
      

Variables used in stock returns analysis      
 - Monthly stock return (%) 0.66 16.35 -7.81 -0.22 7.73 
 - Market capitalization ($ M) 2,319 7,484 46 219 1,082 
 - Market-to-book of equity 2.7 4.0 0.8 1.4 2.8 
 - Momentum (%) 9.7 60.6 -26.8 0.6 30.8 
 - Short-term reversal (%) 0.69 16.29 -7.84 -0.24 7.74 
 - Stock price ($) 20.0 22.9 4.3 12.0 27.3 
      

Dependent variables: Profitability      
 - Return on assets -0.057 0.279 -0.084 0.026 0.079 
      

Dependent variables: Risk      
 - Volatility of return on assets 0.032 0.054 0.006 0.013 0.033 
 - Volatility of stock returns (%) 4.18 2.70 2.31 3.43 5.17 
      

Dependent variables: Labor productivity      
 - Profit per employee ($ M per employee) -0.050 0.247 -0.023 0.005 0.022 
 - Employment / Total assets 
   (employees per $ M) 

5.4 6.6 1.7 3.4 6.4 

- Total assets ($ M) 2,428 7,102 63 280 1,301 
      

Dependent variables: Capital intensity      
 - PP&E / Total assets 0.26 0.22 0.08 0.18 0.37 
 - Inventory / Total assets 0.14 0.16 0.01 0.09 0.22 
 - Capex / Total assets 0.061 0.077 0.016 0.036 0.073 
 - R&D / Total assets 0.067 0.131 0.000 0.004 0.077 
 - Acquisitions / Total assets 0.030 0.093 0.000 0.000 0.007 
      

Dependent variables: Bargaining power      
 - Volatility of (Sales / Total assets) 0.049 0.064 0.012 0.027 0.058 
 - Product differentiation (%) 96.9 2.2 96.3 97.5 98.3 
 - Volatility of (Total costs / Total assets) 0.043 0.059 0.010 0.023 0.050 
 - Volatility of (SG&A / Total assets) 0.012 0.020 0.002 0.005 0.013 
 - Volatility of (COGS / Total assets) 0.034 0.047 0.007 0.017 0.040 
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Dependent variables: Financial policies      
 - Leverage 0.23 0.23 0.02 0.18 0.35 
 - Cash holdings / Total assets 0.20 0.23 0.03 0.10 0.29 
 - Equity issuance / Total assets 0.085 0.270 0.000 0.004 0.022 
 - Share repurchases / Total assets 0.016 0.040 0.000 0.000 0.008 
 - Net debt issuance / Total assets 0.026 0.142 -0.023 0.000 0.030 
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Table 3 
First Stage of IV Regressions 

 
This table shows the results of regressions of AI production on the interaction between the producer firm's R&D 
stock and its own AI exposure or the AI exposure of its customers. Column 3 corresponds to the first stage of the IV 
regressions. The sample period spans 1990-2017 in terms of year t. AI patent counts are measured in year t. They are 
instrumented with R&D stock measured at year t-2 and AI exposure fixed before the start of the sample period. 
Scaling variables are measured in, or ending in, year t. Patent counts are measured in year t. Total patent stock and 
R&D stock are measured during the previous 10 years. The sample and specifications are described in the text. 
Variables are defined in Appendix Table 2. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% 
levels, respectively. 
 

Panel A: Dependent Variable Is AI Patent Counts 
 ln(0.1+AI patent counts) 
  

 (1) (2) (3) 
ln(1+R&D stock) [tax credit induced] 0.053***   0.024* 
  Firm's AI exposure (6.53)   (1.91) 
    

ln(1+R&D stock) [tax credit induced]   0.058*** 0.040*** 
  Customers' AI exposure   (6.69) (3.05) 
    

ln(1+R&D stock) [tax credit induced] 0.037*** 0.038*** 0.038*** 
 (2.61) (2.61) (2.62) 
    

ln(1+Non-AI patent counts) 0.383*** 0.384*** 0.383*** 
 (12.58) (12.60) (12.60) 
    

Innovation dummy variable 0.163** 0.163** 0.163** 
 (2.56) (2.57) (2.56) 
    

ln(Total assets) 0.051*** 0.051*** 0.051*** 
 (6.30) (6.29) (6.32) 
    

ln(Firm age) -0.036*** -0.038*** -0.038*** 
 (-3.87) (-4.13) (-4.12) 
    

Fixed effects    
State  Year? Yes Yes Yes 
SIC3 industry? Yes Yes Yes 
Firm? Yes Yes Yes 
SIC2 industry  Year? Yes Yes Yes 
    

Observations 92,277 92,277 92,277 
Adjusted R2 0.702 0.702 0.702 
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Panel B: Dependent Variable Is AI Patent Counts Scaled by Total Assets 
 ln(0.01+AI patent counts / Total assets) 
  

 (1) (2) (3) 
ln(1+R&D stock) [tax credit induced] 0.080***  0.034* 
  Firm's AI exposure (6.90)  (1.94) 
    

ln(1+R&D stock) [tax credit induced]  0.089*** 0.063*** 
  Customers' AI exposure  (7.04) (3.32) 
    

Control variables and fixed effects? Yes Yes Yes 
    

Observations 92,119 92,119 92,119 
Adjusted R2 0.574 0.574 0.574 

Panel C: Dependent Variable Is AI Patent Counts Scaled by Total Patent Stock 
 ln(0.0001+AI patent counts / Total patent stock) 
  

 (1) (2) (3) 
ln(1+R&D stock) [tax credit induced] 0.067***  0.042** 
  Firm's AI exposure (5.41)  (2.35) 
    

ln(1+R&D stock) [tax credit induced]  0.066*** 0.034* 
  Customers' AI exposure  (4.79) (1.71) 
    

Control variables and fixed effects? Yes Yes Yes 
    

Observations 92,277 92,277 92,277 
Adjusted R2 0.578 0.578 0.578 

Panel D: Dependent Variable Is AI Patent Counts Scaled by Total Patent Counts 
 ln(0.0001+AI patent counts / Total patent counts) 
  

 (1) (2) (3) 
ln(1+R&D stock) [tax credit induced] 0.099***  0.049* 
  Firm's AI exposure (5.96)  (1.80) 
    

ln(1+R&D stock) [tax credit induced]  0.106*** 0.069** 
  Customers' AI exposure  (5.82) (2.40) 
    

Control variables and fixed effects? Yes Yes Yes 
    

Observations 92,119 92,119 92,119 
Adjusted R2 0.595 0.595 0.595 

Panel E: Dependent Variable Is AI Patent Counts Scaled by R&D Stock 
 ln(0.01+AI patent counts / R&D stock) 
  

 (1) (2) (3) 
ln(1+R&D stock) [tax credit induced] 0.108***  0.075*** 
  Firm's AI exposure (7.51)  (2.95) 
    

ln(1+R&D stock) [tax credit induced]  0.102*** 0.045 
  Customers' AI exposure  (5.95) (1.59) 
    

Control variables and fixed effects? Yes Yes Yes 
    

Observations 88,647 88,647 88,647 
Adjusted R2 0.604 0.604 0.604 
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Table 4 
Risk-Adjusted Returns of Portfolios Sorted by Actual AI Patent Counts 

 
This table shows the risk-adjusted returns of portfolios sorted based on actual AI patent counts. The sample and specifications are described in the text. Returns 
are measured from July 1991 to June 2019 (336 consecutive months). Firms are sorted into four quasi-quartiles: zero, low (Q2), medium (Q3), and high (Q4) AI 
patents. The zero AI patents quartile is further sorted into two groups: zero innovation (Q0) and non-zero innovation (Q1). Returns are risk-adjusted using the 
Fama and French (2015) five-factor model. t-statistics are calculated using Newey and West (1987) standard errors with twelve lags. ***, **, and * indicate 
statistical significance at the 1%, 5%, and 10% levels, respectively. 
 

Panel A: Alphas from Sorting by AI Patent Counts 

 
Innovat'n = 0 

& AI = 0 
(Q0) 

Innovat'n > 0 
& AI = 0 

(Q1) 

Low AI  
(Q2) 

Medium AI  
(Q3) 

High AI  
(Q4) 

Q4 – Q2 Q4 – Q1 Q4 – Q0 

Equally weighted 0.07 0.20 0.33** 0.52*** 0.52*** 0.19 0.32** 0.45*** 
 (0.53) (1.53) (2.11) (3.14) (3.66) (1.46) (2.23) (3.35) 
         

Value weighted -0.19** -0.09 -0.04 0.18 0.27** 0.32* 0.37** 0.46*** 
 (-2.41) (-1.18) (-0.41) (1.56) (2.15) (1.90) (2.21) (3.42) 
         

Size neutral -0.17** -0.02 0.19* 0.25* 0.49** 0.31* 0.52** 0.66*** 
 (-2.06) (-0.33) (1.95) (1.91) (2.39) (1.68) (2.54) (3.44) 
         

Mean number of stocks 1,945 709 140 78 99    
Panel B: Alphas from Sorting by AI Patent Counts Scaled by Total Assets 

 
Innovat'n = 0 

& AI = 0 
(Q0) 

Innovat'n > 0 
& AI = 0 

(Q1) 

Low AI  
(Q2) 

Medium AI  
(Q3) 

High AI  
(Q4) 

Q4 – Q2 Q4 – Q1 Q4 – Q0 

Equally weighted 0.07 0.20 0.06 0.50*** 0.74*** 0.69*** 0.54*** 0.67*** 
 (0.53) (1.53) (0.58) (3.19) (2.89) (2.77) (3.06) (3.01) 
         

Value weighted -0.19** -0.09 -0.02 0.36** 0.79** 0.82** 0.89*** 0.98*** 
 (-2.41) (-1.18) (-0.32) (2.16) (2.54) (2.40) (2.68) (2.96) 
         

Size neutral -0.17** -0.02 -0.14 0.41*** 0.68*** 0.82*** 0.71*** 0.85*** 
 (-2.06) (-0.34) (-0.91) (2.70) (2.73) (2.84) (3.02) (3.37) 
         

Mean number of stocks 1,945 708 108 106 102    
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Panel C: Alphas from Sorting by AI Patent Counts Scaled by Total Patent Stock 

 
Innovat'n = 0 

& AI = 0 
(Q0) 

Innovat'n > 0 
& AI = 0 

(Q1) 

Low AI  
(Q2) 

Medium AI  
(Q3) 

High AI  
(Q4) 

Q4 – Q2 Q4 – Q1 Q4 – Q0 

Equally weighted 0.07 0.20 0.08 0.48** 0.73*** 0.64*** 0.53*** 0.66*** 
 (0.53) (1.53) (0.87) (2.54) (3.52) (3.26) (3.29) (3.92) 
         

Value weighted -0.19** -0.09 -0.05 0.24 0.53*** 0.57*** 0.62*** 0.71*** 
 (-2.41) (-1.18) (-0.72) (1.55) (2.84) (2.97) (2.72) (3.61) 
         

Size neutral -0.17** -0.02 0.16 0.30* 0.54*** 0.38 0.56*** 0.71*** 
 (-2.06) (-0.33) (1.02) (1.80) (2.90) (1.49) (2.93) (4.27) 
         

Mean number of stocks 1,945 709 108 107 102    
Panel D: Alphas from Sorting by AI Patent Counts Scaled by Total Patent Counts 

 
Innovat'n = 0 

& AI = 0 
(Q0) 

Innovat'n > 0 
& AI = 0 

(Q1) 

Low AI  
(Q2) 

Medium AI  
(Q3) 

High AI  
(Q4) 

Q4 – Q2 Q4 – Q1 Q4 – Q0 

Equally weighted 0.07 0.20 0.20* 0.42** 0.67*** 0.47*** 0.47*** 0.60*** 
 (0.53) (1.53) (1.92) (2.26) (3.31) (2.61) (2.93) (3.76) 
         

Value weighted -0.19** -0.09 -0.01 0.18 0.53*** 0.54*** 0.62*** 0.72*** 
 (-2.41) (-1.18) (-0.18) (1.07) (2.71) (2.63) (2.68) (3.49) 
         

Size neutral -0.17** -0.02 0.27* 0.23 0.56*** 0.29 0.59*** 0.73*** 
 (-2.06) (-0.33) (1.91) (1.51) (2.82) (1.25) (2.87) (4.22) 
         

Mean number of stocks 1,945 709 109 109 99    
Panel E: Alphas from Sorting by AI Patent Counts Scaled by R&D Stock 

 
Innovat'n = 0 

& AI = 0 
(Q0) 

Innovat'n > 0 
& AI = 0 

(Q1) 

Low AI  
(Q2) 

Medium AI  
(Q3) 

High AI  
(Q4) 

Q4 – Q2 Q4 – Q1 Q4 – Q0 

Equally weighted 0.07 0.28** 0.28** 0.45*** 0.70*** 0.42** 0.41*** 0.63*** 
 (0.53) (1.97) (2.31) (3.11) (3.05) (2.29) (2.78) (3.29) 
         

Value weighted -0.19** 0.05 0.04 0.30* 0.32 0.28 0.27 0.51** 
 (-2.41) (0.58) (0.57) (1.85) (1.64) (1.39) (1.15) (2.50) 
         

Size neutral -0.17** 0.10 0.30** 0.36** 0.40** 0.10 0.30* 0.57*** 
 (-2.06) (1.26) (2.25) (2.27) (2.50) (0.71) (1.88) (3.71) 
         

Mean number of stocks 1,945 615 99 97 94    
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Table 5 
Risk-Adjusted Returns of Portfolios Double Sorted by R&D Stock and AI Exposure 

 
This table shows the risk-adjusted returns of portfolios double sorted independently based on (tax credit induced) 
R&D capital stock and AI exposure. The sample and specifications are described in the text. Returns are measured 
from July 1991 through June 2019 (336 consecutive months). Firms are sorted into three quasi-terciles based on 
R&D capital stock: zero R&D stock ("low R&D", L), and two halves of non-zero R&D stock ("medium R&D", M; 
and "high R&D", H). Independently, firms are sorted into terciles based on AI exposure at the industry level 
measured as the first principal component of the respective AI exposures of the firm and its customers. Returns are 
risk-adjusted using the Fama and French (2015) five-factor model. t-statistics are calculated using Newey and West 
(1987) standard errors with twelve lags. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% 
levels, respectively. 
 

Panel A: Alphas of Equally Weighted Portfolios 

 
Exposure T1  

(low) 
Exposure T2  

(medium) 
Exposure T3  

(high) 
Exposure  
(T3 – T1) 

Low R&D stock (L) -0.23 -0.45** -0.07 0.15 
 (-1.57) (-2.57) (-0.62) (1.34) 
     

Medium R&D stock (M) -0.08 -0.01 0.55** 0.63** 
 (-0.54) (-0.08) (2.42) (2.53) 
     

High R&D stock (H) -0.25* 0.00 0.79*** 1.04*** 
 (-1.79) (0.04) (4.05) (3.77) 
     

R&D stock (H – L) -0.02 0.46** 0.87*** 0.89*** 
 (-0.17) (2.37) (3.99) (3.71) 

Panel B: Alphas of Value Weighted Portfolios 

 
Exposure T1  

(low) 
Exposure T2  

(medium) 
Exposure T3  

(high) 
Exposure  
(T3 – T1) 

Low R&D stock (L) -0.37*** -0.26** -0.29*** 0.09 
 (-3.07) (-2.38) (-2.85) (0.55) 
     

Medium R&D stock (M) -0.32 -0.27 0.20 0.52** 
 (-1.56) (-1.19) (1.57) (2.32) 
     

High R&D stock (H) -0.20 -0.03 0.27*** 0.47*** 
 (-1.62) (-0.27) (3.13) (2.86) 
     

R&D stock (H – L) 0.18* 0.23 0.56*** 0.38** 
 (1.69) (1.24) (4.04) (2.06) 

Panel C: Alphas of Size Neutral Portfolios 

 
Exposure T1  

(low) 
Exposure T2  

(medium) 
Exposure T3  

(high) 
Exposure  
(T3 – T1) 

Low R&D stock (L) -0.35*** -0.39*** -0.27*** 0.08 
 (-3.44) (-3.22) (-2.93) (0.71) 
     

Medium R&D stock (M) -0.35* -0.30 0.27** 0.62*** 
 (-1.83) (-1.36) (2.13) (2.93) 
     

High R&D stock (H) -0.26** -0.07 0.44*** 0.70*** 
 (-2.01) (-0.63) (3.71) (3.52) 
     

R&D stock (H – L) 0.09 0.32** 0.71*** 0.62*** 
 (1.15) (1.98) (4.77) (3.26) 
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Panel D: Mean Number of Stocks in Each Portfolio 

 
Exposure T1  

(low) 
Exposure T2  

(medium) 
Exposure T3  

(high) 
Exposure  
(T3 – T1) 

Low R&D stock (L) 258 422 652  
     

Medium R&D stock (M) 115 134 537  
     

High R&D stock (H) 103 149 598  
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Table 6 
Fama-MacBeth Regressions of Stock Returns on AI Production 

 
This table shows the results of Fama-MacBeth regressions of individual monthly stock returns on AI production. 
The sample and specifications are described in the text. Returns are measured from July 1991 to June 2019 (336 
consecutive months). The controls variables for non-AI patent counts and R&D spending are scaled by total assets, 
and the small constants added before taking logarithms are suitably adjusted. The other control variables are market 
capitalization, market-to-book of equity, momentum, short-term reversal, return on assets, capex-to-total assets, 
stock price, and firm age. Variables are defined in Appendix Table 2. t-statistics are calculated using Newey and 
West (1987) standard errors with twelve lags. The coefficient of determination, F-statistic for instrument, and p-
value of Hansen J-statistic are the time-series averages of the corresponding statistics across the cross-sectional 
regressions. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. 
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Panel A: Actual AI Patent Counts (OLS) 
 Dependent variable is monthly stock return 
      

 Scaling variable for AI patent counts 
      

 None Total assets 
Total patent 

stock 
Total patent 

counts 
R&D stock 

Year t+1      
      

ln(0.1+AI patent counts) 0.002  0.026** 0.018* 0.013* 0.016 
 (0.13) (2.14) (1.72) (1.66) (1.61) 
      

ln(1+Non-AI patent counts) -0.081** 0.037* 0.040 0.041** -0.006 
 (-2.10) (1.81) (0.81) (2.03) (-0.31) 
      

ln(1+R&D spending) 0.139*** 0.111*** 0.115*** 0.113*** 0.117*** 
 (3.81) (3.35) (3.41) (3.39) (3.38) 
      

Innovation dummy variable 0.120 -0.160** -0.052 -0.166** 0.033 
 (1.52) (-2.27) (-0.77) (-2.33) (0.28) 
      

Control variables? Yes Yes Yes Yes Yes 
FF48 industry fixed effects? Yes Yes Yes Yes Yes 
      

Observations 997,382 997,382 997,394 997,394 956,844 
R2 0.090 0.090 0.090 0.090 0.090 

Panel B: Instrumented AI Patent Counts (IV) and Returns in Year t+1 
 Dependent variable is monthly stock return 
      

 Scaling variable for AI patent counts 
      

 None Total assets 
Total patent 

stock 
Total patent 

counts 
R&D stock 

Year t+1      
      

ln(0.1+AI patent counts) 0.433*** 0.308*** 0.275*** 0.229*** 0.245*** 
 [instrumented] (3.12) (3.00) (3.11) (3.11) (2.95) 
      

Firm's AI exposure -0.019 -0.024 -0.025 -0.025 -0.030 
 (-0.39) (-0.48) (-0.50) (-0.49) (-0.58) 
      

Customers' AI exposure 0.065 0.065 0.062 0.064 0.060 
 (1.36) (1.34) (1.30) (1.33) (1.18) 
      

ln(1+R&D stock) 0.220*** 0.218*** 0.221*** 0.216*** 0.225*** 
 [tax credit induced] (5.86) (5.86) (5.90) (5.86) (5.83) 
      

ln(1+Non-AI patent counts) -0.268*** -0.160*** -0.124*** -0.159*** -0.191*** 
 (-3.21) (-2.89) (-2.63) (-2.89) (-3.00) 
      

ln(1+R&D spending) -0.132*** -0.133*** -0.143*** -0.140*** -0.113*** 
 (-3.06) (-3.06) (-3.23) (-3.17) (-2.67) 
      

Innovation dummy variable 0.149* -0.062 -0.133 -0.088 -0.085 
 (1.69) (-0.81) (-1.45) (-1.00) (-0.99) 
      

Control variables? Yes Yes Yes Yes Yes 
FF48 industry fixed effects? Yes Yes Yes Yes Yes 
      

Observations 997,382 997,382 997,394 997,394 956,844 
F-statistic for instrument 36.3 48.8 41.2 35.3 44.5 
p-value of Hansen J-statistic 0.450 0.440 0.445 0.446 0.452 
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Panel C: Instrumented AI Patent Counts (IV) and Returns in Year t+2 to Year t+5 
 Dependent variable is monthly stock return 
      

 Scaling variable for AI patent counts 
      

 None Total assets 
Total patent 

stock 
Total patent 

counts 
R&D stock 

Year t+2      
      

ln(0.1+AI patent counts) 0.736** 0.319** 0.321** 0.279** 0.234* 
 [instrumented] (2.22) (2.07) (2.48) (2.51) (1.74) 
      

Observations 910,899 910,830 910,953 910,899 857,221 
      

Year t+3      
      

ln(0.1+AI patent counts) 1.322** 0.644** 0.600** 0.558** 0.705* 
 [instrumented] (2.45) (2.47) (2.38) (2.37) (1.90) 
      

Observations 835,074 834,948 835,247 835,074 774,358 
      

Year t+4      
      

ln(0.1+AI patent counts) 0.379 0.509* 0.664** 0.563** 0.950 
 [instrumented] (0.71) (1.83) (2.25) (2.39) (1.55) 
      

Observations 757,043 756,889 757,392 757,043 692,923 
      

Year t+5      
      

ln(0.1+AI patent counts) 0.653 0.212 0.317 0.387* 0.587** 
 [instrumented] (1.20) (0.59) (1.21) (1.68) (2.00) 
      

Observations 676,957 676,797 677,429 676,957 612,509 
 



79 

Table 7 
The Effect of AI Production on the Producer Firm's Profitability 

 
This table shows the results of regressions of cash flow levels on AI production. AI patent counts are instrumented 
with the interaction between the producer firm's R&D stock and its own AI exposure as well as that of its customers. 
The sample period spans 1990-2017 in terms of year t. AI patent counts are measured in year t. They are 
instrumented with R&D stock measured at year t-2 and AI exposure fixed before the start of the sample period. 
Outcomes are measured in year t+1 and subsequent years. The sample and specifications are described in the text. In 
Panel B, AI patent stock is measured at t-3 during the previous 10 years. In Panel C and Panel D, positive AI patent 
stock is sorted into below and above its median (respectively, "low" and "high"). Variables are defined in Appendix 
Table 2. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. 
 

Panel A: Current AI Patent Counts Only, Without Conditioning on Past AI Patent Stock 
 Dependent variable is return on assets 
    

 Year t+1 Year t+2 Year t+3 
ln(0.1+AI patent counts) [instrumented] 0.074** 0.034 0.019 
 (2.18) (1.33) (0.82) 
    

ln(1+R&D stock) [tax credit induced] 0.006** 0.007*** 0.006*** 
 (2.57) (3.18) (2.86) 
    

ln(1+Non-AI patent counts) -0.038*** -0.017* -0.008 
 (-2.89) (-1.72) (-0.87) 
    

Control variables? Yes Yes Yes 
    

Fixed effects    
State  Year? Yes Yes Yes 
SIC3 industry? Yes Yes Yes 
Firm? Yes Yes Yes 
SIC2 industry  Year? Yes Yes Yes 
    

Observations 92,275 85,721 79,813 
F-statistic for instrument 25.7 25.0 25.3 
p-value of Hansen J-statistic 0.991 0.312 0.036 
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Panel B: Conditioning on Past AI Patent Stock Being Positive 
 Dependent variable is return on assets 
    

 Year t+1 Year t+2 Year t+3 
ln(0.1+AI patent counts) [instrumented] 0.081*** 0.036 0.023 
 (2.66) (1.59) (1.04) 
    

ln(0.1+AI patent counts) [instrumented] 0.008 0.010 0.007 
  Dummy variable for past AI patent stock is positive (1.28) (1.62) (1.19) 
    

Control variables and fixed effects? Yes Yes Yes 
    

Observations 92,275 85,721 79,813 
Panel C: Conditioning on Past AI Patent Stock Counts Being Positive and Separately Above the Median 

 Dependent variable is return on assets 
    

 Year t+1 Year t+2 Year t+3 
ln(0.1+AI patent counts) [instrumented] 0.086*** 0.039* 0.026 
 (2.78) (1.69) (1.14) 
    

ln(0.1+AI patent counts) [instrumented] 0.000 0.003 0.004 
  Dummy var. for past AI patent stock is positive (0.05) (0.49) (0.57) 
    

ln(0.1+AI patent counts) [instrumented] 0.016** 0.012* 0.005 
  Dummy variable for past AI patent stock is high (2.27) (1.73) (0.80) 
    

Control variables and fixed effects? Yes Yes Yes 
    

Observations 92,275 85,721 79,813 
Panel D: Conditioning on Past AI Patent Stock Ratio Being Positive and Separately Above the Median 

 Dependent variable is return on assets 
    

 Year t+1 Year t+2 Year t+3 
ln(0.1+AI patent counts) [instrumented] 0.085*** 0.040* 0.023 
 (2.75) (1.71) (1.03) 
    

ln(0.1+AI patent counts) [instrumented] -0.004 -0.007 -0.008 
  Dummy var. for past AI patent stock is positive (-0.61) (-0.97) (-1.03) 
    

ln(0.1+AI patent counts) [instrumented] 0.024** 0.031*** 0.030*** 
  Dummy variable for past AI patent stock is high (2.56) (3.15) (3.07) 
    

Control variables and fixed effects? Yes Yes Yes 
    

Observations 92,275 85,721 79,813 
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Table 8 
The Effect of AI Production on the Producer Firm's Risk 

 
This table shows the results of regressions of cash flow and stock return volatilities on AI production. AI patent counts are instrumented with the interaction 
between the producer firm's R&D stock and its own AI exposure as well as that of its customers. The sample period spans 1990-2017 in terms of year t. AI patent 
counts are measured in year t. They are instrumented with R&D stock measured at year t-2 and AI exposure fixed before the start of the sample period. Outcomes 
are measured in year t+1 and subsequent years. The sample and specifications are described in the text. In Panel B, AI patent stock is measured at t-3 during the 
previous 10 years. In Panel C and Panel D, positive AI patent stock is sorted into below and above its median (respectively, "low" and "high"). Variables are 
defined in Appendix Table 2. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. 
 

Panel A: Current AI Patent Counts Only, Without Conditioning on Past AI Patent Stock 
 Dependent variable is 
       

 ln(Volatility of return on assets) ln(Volatility of stock returns) 
       

 Year t+1 Year t+2 Year t+3 Year t+1 Year t+2 Year t+3 
       

ln(0.1+AI patent counts) [instrumented] -0.710*** -0.454*** -0.470*** -0.229*** -0.178*** -0.187*** 
 (-4.39) (-3.38) (-3.45) (-4.21) (-3.34) (-3.34) 
       

ln(1+R&D stock) [tax credit induced] -0.013 -0.019 -0.011 -0.002 -0.001 -0.002 
 (-0.84) (-1.41) (-0.77) (-0.43) (-0.19) (-0.39) 
       

ln(1+Non-AI patent counts) 0.278*** 0.170*** 0.179*** 0.082*** 0.051** 0.053** 
 (4.42) (3.20) (3.30) (3.94) (2.45) (2.34) 
       

Control variables? Yes Yes Yes Yes Yes Yes 
       

Fixed effects       
State  Year? Yes Yes Yes Yes Yes Yes 
SIC3 industry? Yes Yes Yes Yes Yes Yes 
Firm? Yes Yes Yes Yes Yes Yes 
SIC2 industry  Year? Yes Yes Yes Yes Yes Yes 
       

Observations 91,251 84,909 78,943 91,854 89,416 81,842 
F-statistic for instrument 25.7 25.0 25.3 25.9 26.4 25.6 
p-value of Hansen J-statistic 0.732 0.247 0.017 0.780 0.455 0.190 
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Panel B: Conditioning on Past AI Patent Stock Being Positive 
 Dependent variable is 
       

 ln(Volatility of return on assets) ln(Volatility of stock returns) 
       

 Year t+1 Year t+2 Year t+3 Year t+1 Year t+2 Year t+3 
ln(0.1+AI patent counts) [instrumented] -0.657*** -0.397*** -0.425*** -0.200*** -0.149*** -0.157*** 
 (-5.17) (-3.39) (-3.53) (-4.11) (-2.98) (-3.01) 
       

ln(0.1+AI patent counts) [instrumented] -0.062*** -0.064*** -0.067*** -0.021*** -0.029*** -0.034*** 
  Dummy var. for past AI patent stock is positive (-2.62) (-2.72) (-2.72) (-2.70) (-3.62) (-3.96) 
       

Control variables and fixed effects? Yes Yes Yes Yes Yes Yes 
       

Observations 91,251 84,909 78,943 91,854 89,416 81,842 
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Panel C: Conditioning on Past AI Patent Stock Counts Being Positive and Separately Above the Median 
 Dependent variable is 
       

 ln(Volatility of return on assets) ln(Volatility of stock returns) 
       

 Year t+1 Year t+2 Year t+3 Year t+1 Year t+2 Year t+3 
ln(0.1+AI patent counts) [instrumented] -0.651*** -0.403*** -0.422*** -0.189*** -0.135*** -0.146*** 
 (-5.07) (-3.43) (-3.49) (-3.84) (-2.70) (-2.79) 
       

ln(0.1+AI patent counts) [instrumented] -0.053* -0.036 -0.042 -0.009 -0.012 -0.018* 
  Dummy var. for past AI patent stock is positive (-1.88) (-1.24) (-1.42) (-0.97) (-1.30) (-1.74) 
       

ln(0.1+AI patent counts) [instrumented] -0.024 -0.037 -0.029 -0.017 -0.022** -0.016 
  Dummy variable for past AI patent stock is high (-0.74) (-1.14) (-0.91) (-1.58) (-2.01) (-1.37) 
       

Control variables and fixed effects? Yes Yes Yes Yes Yes Yes 
       

Observations 91,251 84,909 78,943 91,854 89,416 81,842 
Panel D: Conditioning on Past AI Patent Stock Ratio Being Positive and Separately Above the Median 

 Dependent variable is 
       

 ln(Volatility of return on assets) ln(Volatility of stock returns) 
       

 Year t+1 Year t+2 Year t+3 Year t+1 Year t+2 Year t+3 
ln(0.1+AI patent counts) [instrumented] -0.668*** -0.415*** -0.428*** -0.193*** -0.144*** -0.153*** 
 (-5.20) (-3.52) (-3.56) (-3.89) (-2.83) (-2.89) 
       

ln(0.1+AI patent counts) [instrumented] -0.074** -0.074** -0.094*** -0.014 -0.028** -0.033** 
  Dummy var. for past AI patent stock is positive (-2.35) (-2.31) (-2.69) (-1.21) (-2.29) (-2.46) 
       

ln(0.1+AI patent counts) [instrumented] 0.031 0.020 0.048 -0.007 0.001 -0.001 
  Dummy variable for past AI patent stock is high (0.79) (0.50) (1.17) (-0.48) (0.05) (-0.07) 
       

Control variables and fixed effects? Yes Yes Yes Yes Yes Yes 
       

Observations 91,251 84,909 78,943 91,854 89,416 81,842 
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Table 9 
The Effect of AI Production on the Producer Firm's Stock Return Volatility: Decomposition 

 
This table shows the results of the same regressions of stock return volatility as in Table 8 Panel A but with slight 
modifications, as indicated. 
 

Panel A: Systematic Component of Stock Return Volatility from Fama and French (2015) Five-Factor Model 
 Dependent variable is ln(Stock return volatility) 
    

 Year t+1 Year t+2 Year t+3 
ln(0.1+AI patent counts) [instrumented] -0.316*** -0.292*** -0.306*** 
 (-4.54) (-4.12) (-4.11) 
    

ln(1+R&D stock) [tax credit induced] 0.007 0.003 -0.002 
 (0.98) (0.34) (-0.21) 
    

ln(1+Non-AI patent counts) 0.089*** 0.075** 0.086*** 
 (3.13) (2.56) (2.74) 
    

Control variables and fixed effects? Yes Yes Yes 
    

Observations 91,870 89,418 81,844 
F-statistic for instrument 25.9 26.4 25.6 
p-value of Hansen J-statistic 0.531 0.316 0.235 

Panel B: Idiosyncratic Component of Stock Return Volatility Fama and French (2015) Five-Factor Model 
 Dependent variable is ln(Stock return volatility) 
    

 Year t+1 Year t+2 Year t+3 
ln(0.1+AI patent counts) [instrumented] -0.186*** -0.136** -0.146** 
 (-3.43) (-2.52) (-2.56) 
    

ln(1+R&D stock) [tax credit induced] -0.007 -0.005 -0.005 
 (-1.26) (-0.86) (-0.85) 
    

ln(1+Non-AI patent counts) 0.067*** 0.035* 0.036 
 (3.23) (1.66) (1.57) 
    

Control variables and fixed effects? Yes Yes Yes 
    

Observations 91,870 89,418 81,844 
F-statistic for instrument 25.9 26.4 25.6 
p-value of Hansen J-statistic 0.747 0.905 0.500 

Panel C: Beta from CAPM 
 Dependent variable is beta 
    

 Year t+1 Year t+2 Year t+3 
ln(0.1+AI patent counts) [instrumented] -0.346*** -0.360*** -0.339*** 
 (-4.75) (-4.66) (-4.33) 
    

ln(1+R&D stock) [tax credit induced] 0.008 0.000 -0.008 
 (1.12) (0.05) (-0.94) 
    

ln(1+Non-AI patent counts) 0.070** 0.089*** 0.091*** 
 (2.33) (2.75) (2.79) 
    

Control variables and fixed effects? Yes Yes Yes 
    

Observations 91,870 89,418 81,844 
F-statistic for instrument 25.9 26.4 25.6 
p-value of Hansen J-statistic 0.107 0.080 0.163 
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Table 10 
Mechanisms Underlying the Effect of AI Production: The Producer Firm's Labor Productivity 

 
This table shows the results of regressions of labor productivity measures on AI production. AI patent counts are 
instrumented with the interaction between the producer firm's R&D stock and its own AI exposure as well as that of 
its customers. The sample period spans 1990-2017 in terms of year t. AI patent counts are measured in year t. They 
are instrumented with R&D stock measured at year t-2 and AI exposure fixed before the start of the sample period. 
Outcomes are measured in year t+1. The sample and specifications are described in the text. Variables are defined in 
Appendix Table 2. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. 
 

 Dependent variable is 
    

 
Profit per 
employee 

ln(Employment  
/ Total assets) 

ln(Total assets) 

ln(0.1+AI patent counts) [instrumented] 0.073* -0.075 -0.030 
 (1.94) (-0.84) (-0.73) 
    

ln(1+R&D stock) [tax credit induced] 0.005** 0.019** -0.002 
 (2.41) (2.16) (-0.54) 
    

ln(1+Non-AI patent counts) -0.027* 0.043 0.021 
 (-1.91) (1.26) (1.29) 
    

Control variables? Yes Yes Yes 
    

Fixed effects    
State  Year? Yes Yes Yes 
SIC3 industry? Yes Yes Yes 
Firm? Yes Yes Yes 
SIC2 industry  Year? Yes Yes Yes 
    

Observations 90,899 90,741 92,323 
F-statistic for instrument 25.2 26.1 25.6 
p-value of Hansen J-statistic 0.957 0.760 0.886 
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Table 11 
Mechanisms Underlying the Effect of AI Production: The Producer Firm's Capital Intensity 

 
This table shows the results of regressions of capital intensity and investments on AI production. AI patent counts are instrumented with the interaction between 
the producer firm's R&D stock and its own AI exposure as well as that of its customers. The sample period spans 1990-2017 in terms of year t. AI patent counts 
are measured in year t. They are instrumented with R&D stock measured at year t-2 and AI exposure fixed before the start of the sample period. Outcomes are 
measured in year t+1. The sample and specifications are described in the text. Variables are defined in Appendix Table 2. ***, **, and * indicate statistical 
significance at the 1%, 5%, and 10% levels, respectively. 
 

 Dependent variable is ln( / Total assets) 
      

 
Property, plant, and 

equipment 
Inventory Capex R&D spending 

Acquisitions 
expenditures 

ln(0.1+AI patent counts) [instrumented] -0.236** -0.335** -0.377*** -0.636*** 0.348* 
 (-2.41) (-2.09) (-2.83) (-3.50) (1.67) 
      

ln(1+R&D stock) [tax credit induced] -0.002 0.039*** -0.027** 0.167*** 0.011 
 (-0.16) (2.66) (-2.18) (9.00) (0.50) 
      

ln(1+Non-AI patent counts) 0.099** 0.145** 0.117** 0.269*** -0.103 
 (2.55) (2.28) (2.21) (3.74) (-1.24) 
      

Control variables? Yes Yes Yes Yes Yes 
      

Fixed effects      
State  Year? Yes Yes Yes Yes Yes 
SIC3 industry? Yes Yes Yes Yes Yes 
Firm? Yes Yes Yes Yes Yes 
SIC2 industry  Year? Yes Yes Yes Yes Yes 
      

Observations 91,860 92,323 92,316 92,332 92,336 
F-statistic for instrument 26.0 25.6 25.6 25.6 25.6 
p-value of Hansen J-statistic 0.116 0.967 0.367 0.733 0.839 
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Table 12 
Mechanisms Underlying the Effect of AI Production: The Producer Firm's Bargaining Power 

 
This table shows the results of regressions of the volatility of various production inputs and outputs on AI production. AI patent counts are instrumented with the 
interaction between the producer firm's R&D stock and its own AI exposure as well as that of its customers. The sample period spans 1990-2017 in terms of year 
t. AI patent counts are measured in year t. They are instrumented with R&D stock measured at year t-2 and AI exposure fixed before the start of the sample 
period. Outcomes are measured in year t+1. The sample and specifications are described in the text. Variables are defined in Appendix Table 2. ***, **, and * 
indicate statistical significance at the 1%, 5%, and 10% levels, respectively. 
 

 Dependent variable is 
      

 
ln(Volatility of 

(Sales  
/ Total assets)) 

Product 
differentiation 

ln(Volatility of 
(Total costs  

/ Total assets)) 

ln(Volatility of 
(SG&A  

/ Total assets)) 

ln(Volatility of 
(COGS  

/ Total assets)) 
ln(0.1+AI patent counts) [instrumented] -0.471*** 0.500* -0.509*** -0.355*** -0.472*** 
 (-3.87) (1.90) (-4.06) (-3.00) (-3.79) 
      

ln(1+R&D stock) [tax credit induced] 0.005 -0.023 0.005 0.003 -0.003 
 (0.42) (-0.81) (0.41) (0.27) (-0.26) 
      

ln(1+Non-AI patent counts) 0.177*** -0.155 0.187*** 0.137*** 0.174*** 
 (3.47) (-1.53) (3.73) (2.76) (3.47) 
      

Control variables? Yes Yes Yes Yes Yes 
      

Fixed effects      
State  Year? Yes Yes Yes Yes Yes 
SIC3 industry? Yes Yes Yes Yes Yes 
Firm? Yes Yes Yes Yes Yes 
SIC2 industry  Year? Yes Yes Yes Yes Yes 
      

Observations 89,671 84,120 88,503 80,867 88,080 
F-statistic for instrument 25.6 23.0 25.8 29.7 26.3 
Hansen J-statistic 0.555 0.243 0.474 0.811 0.727 
p-value of Hansen J-statistic -0.471*** 0.500* -0.509*** -0.355*** -0.472*** 
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Table 13 
The Effect of AI Production on the Producer Firm's Financial Policies 

 
This table shows the results of regressions of various financing variables on AI production. AI patent counts are instrumented with the interaction between the 
producer firm's R&D stock and its own AI exposure as well as that of its customers. The sample period spans 1990-2017 in terms of year t. AI patent counts are 
measured in year t. They are instrumented with R&D stock measured at year t-2 and AI exposure fixed before the start of the sample period. Outcomes are 
measured in year t+1. The sample and specifications are described in the text. Variables are defined in Appendix Table 2. ***, **, and * indicate statistical 
significance at the 1%, 5%, and 10% levels, respectively. 
 

 Dependent variable is 
      

 ln(Leverage) 
ln(Cash holdings  

/ Total assets) 
Net debt issuance  

/ Total assets 
Equity issuance  

/ Total assets 
Share repurchases  

/ Total assets 
ln(0.1+AI patent counts) [instrumented] 0.283* -0.250** 0.024* -0.082** 0.009 
 (1.70) (-2.13) (1.70) (-2.56) (1.60) 
      

ln(1+R&D stock) [tax credit induced] 0.020 0.002 0.002 -0.008*** 0.000 
 (1.21) (0.15) (1.40) (-2.88) (0.30) 
      

ln(1+Non-AI patent counts) -0.045 0.095** -0.004 0.044*** -0.001 
 (-0.68) (2.06) (-0.69) (3.47) (-0.31) 
      

Control variables? Yes Yes Yes Yes Yes 
      

Fixed effects      
State  Year? Yes Yes Yes Yes Yes 
SIC3 industry? Yes Yes Yes Yes Yes 
Firm? Yes Yes Yes Yes Yes 
SIC2 industry  Year? Yes Yes Yes Yes Yes 
      

Observations 92,323 92,322 92,337 92,337 92,337 
F-statistic for instrument 25.6 25.6 25.6 25.6 25.6 
Hansen J-statistic 0.402 0.136 0.327 0.746 0.766 
p-value of Hansen J-statistic 0.283* -0.250** 0.024* -0.082** 0.009 
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Figure 1. Share of AI innovation in aggregate innovation activity. This figure shows the annual share of AI 
patent grants in all patent grants (AI and non-AI). Innovation activity is measured variously as patent counts, 
forward citations to patents, and the market value of patents. 
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Figure 2. Share of breakthrough innovations in AI vs. non-AI innovations. This figure shows the annual rate of 
patents that are classified as breakthrough patents. Classification is based on textual analysis identifying patent 
grants that are distinct from prior patents but related to subsequent patents. 
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Panel A: Share of Industries that Produce AI Innovation 
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Panel B: Share of Industries that Produce Innovation using Prior AI Innovation 
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Figure 3. Diffusion of AI innovation across industries. This figure shows the diffusion of AI innovation across 
industries (SIC3s). Panel A shows the share of industries with AI patent grants exceeding various thresholds, e.g., 
industries where AI patents account for at least 10% of all patents. Panel B shows the share of industries with patent 
grants that cite prior AI patents, where such citing patent grants exceed various thresholds, e.g., accounting for at 
least 10% of patents in the industry. 
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Panel A: Share of Publicly Traded U.S. Firms, Relative to All Patenting Entities, of AI vs. Non-AI Patents 
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Panel B: Share of Publicly Traded U.S. Firms, Relative to All U.S. Firms, of AI vs. Non-AI Patents 
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Panel C: Share of Innovative Publicly Traded U.S. Firms With At Least One AI Patent 
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Figure 4. The importance of publicly traded firms in AI innovation. This figure shows the share of publicly 
traded firms in AI patent grants separately from their share in non-AI patent grants. The share of publicly traded 
U.S. firms is calculated relative to all patenting entities (Panel A) and also relative to all U.S. firms (Panel B). The 
figure also shows, within the sample of publicly traded U.S. firms with at least one patent, the share of firms with at 
least one AI patent (Panel C). 
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Appendix Table 1 
Illustrative Examples of AI Patents 

 
This table shows illustrative examples of AI patents in the baseline sample restricted to industries with at least 10 
firms per year every year during the sample period. Patent numbers and titles reference patents from the USPTO. 
Industries are ranked, from greatest to least, based on their total number of AI patents, as in Table 1. 
 

Patent number Patent title Firm SIC3 
Industry AI 
patent rank 

10043516 Intelligent automated assistant Apple 366 5 

8892487 Electronic synapses for reinforcement 
learning 

IBM 737 1 

8384776 Detection of topological structure from 
sensor data with application to 
autonomous driving in semi-structured 
environments 

Toyota 371 9 

3987279 Automatic performance reserve (APR) 
system 

Boeing 372 8 

8140069 System and method for determining the 
audio fidelity of calls made on a cellular 
network using frame error rate and pilot 
signal strength 

Sprint 481 7 

7231074 Method for determining the efficacy of an 
anti-cancer treatment using image 
analysis 

Pfizer 283 10 

7657494 Method for forecasting the production of 
a petroleum reservoir utilizing genetic 
programming 

Chevron 291 11 

7370001 Method and system of forecasting 
unscheduled component demand 

Delta 451 29 

4827426 Data acquisition and processing system 
for post-mix beverage dispensers 

Coca-Cola 208 27 

9218633 Cooking management Starbucks 581 34 
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Appendix Table 2 
Variable Definitions 

 
Independent Variables Common to All Regressions 

Name Definition 
 - AI patent counts The number of AI patent grants during the 12 months before the fiscal 

yearend date 
 - Non-AI patent counts The number of non-AI patent grants during the 12 months before the fiscal 

yearend date 
 - R&D stock [tax credit induced] R&D spending predicted using the user cost of R&D implied by federal 

and state R&D tax credits, capitalized during the previous 10 years at a 
depreciation rate of 15%. See Section 4.1 for details. 

 - Firm's AI exposure The producer firm's industry's labor's exposure to AI. AI exposure scores 
for each occupation are from Felten, Raj, and Seamans (2021) and 
aggregated at the industry level using employment shares between 1988 
and 1990. Firms are assigned to the industry-level AI exposure of their 
primary industry. See Section 4.1 for details. 

 - Customers' AI exposure  The producer firm's customers' industries' labor's exposure to AI. AI 
exposure scores for each occupation are from Felten, Raj, and Seamans 
(2021) and aggregated at the industry level using employment shares 
between 1988 and 1990. Customer industries and their product purchase 
shares are identified using industry input-output tables. Customers' AI 
exposure is calculated as the product purchase weighted average of the 
industry-level AI exposures of customer industries. See Section 4.1 for 
details. 

 - Total assets AT from Compustat 
 - Firm age Years since the date the firm began trading publicly according to CRSP 
 - Innovation dummy variable Dummy variable for whether the firm has at least one patent granted during 

the preceding 12 months 
AI Patent Counts with Alternative Scaling Variables 

Name Definition 
 - AI patent counts / Total assets AI patent counts as defined above scaled by AT from Compustat (in $ 

billions). Small constant added before taking logarithm: 0.01. 
 - AI patent counts 
     / Total patent stock 

AI patent counts as defined above scaled by the cumulative number of total 
patent (AI and non-AI) grants during the 10 years before the fiscal yearend 
date. Set to zero when the denominator is zero. Small constant added before 
taking logarithm: 0.0001. 

 - AI patent counts 
     / Total patent counts 

AI patent counts as defined above scaled by total patent (AI and non-AI) 
counts defined analogously during the same period. Set to zero when the 
denominator is zero. Small constant added before taking logarithm: 0.0001. 

 - AI patent counts / R&D stock AI patent counts as defined above scaled by R&D stock as defined above 
but using actual (rather than predicted) R&D spending (in $ billions). When 
the denominator is zero, set to zero and missing, respectively, if total (AI 
plus non-AI) patent counts is, respectively, zero and positive. Small 
constant added before taking logarithm: 0.01. 

Variables Used in Stock Returns Analysis 
Name Definition 
 - Monthly stock return RET from CRSP 
 - Market capitalization Stock price multiplied by shares outstanding from CRSP 
 - Market-to-book of equity Market capitalization at the end of December from CRSP scaled by the 

book value of common equity in the same year from Compustat. The latter 
is constructed as the Compustat book value of stockholders' equity, plus 
balance-sheet deferred taxes and investment tax credit, minus the book 
value of preferred stock. See Fama and French (1993) for details. 

 - Momentum Cumulative stock return during months [-12,-2] 
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 - Short-term reversal Stock return during the previous month from CRSP 
 - Stock price Stock price from CRSP lagged by two months 

Dependent Variables 
Name Definition 
Profitability  
 - Return on assets NI/AT from Compustat 
  

Risk  
 - Volatility of return on assets Standard deviation of quarterly NIQ/AT during the 12 months after the 

fiscal yearend date. From Compustat. 
 - Volatility of stock returns Standard deviation of daily stock returns during the 12 months after the 

fiscal yearend date. From CRSP. 
  

Labor productivity  
 - Profit per employee NI/EMP from Compustat 
 - Employment / Total assets EMP/AT from Compustat 
  

Capital intensity  
 - PP&E / Total assets PPENT/AT from Compustat 
 - Inventory / Total assets INVT/AT from Compustat. Small constant added before taking logarithm: 

0.001. 
 - Capex / Total assets CAPX/AT from Compustat. Small constant added before taking logarithm: 

0.001. 
 - R&D / Total assets XRD/AT from Compustat. Small constant added before taking logarithm: 

0.001. 
 - Acquisitions / Total assets AQC/AT from Compustat. Small constant added before taking logarithm: 

0.001. 
  

Bargaining power  
 - Volatility of  
    (Sales / Total assets) 

Standard deviation of quarterly SALEQ/AT during the 12 months after the 
fiscal yearend date. From Compustat. 

 - Product differentiation Hoberg and Phillips (2016) average product similarity score, subtracted 
from 1, multiplied by 100 

 - Volatility of  
    (Total costs / Total assets) 

Standard deviation of quarterly (COGSQ+XSGAQ)/AT during the 12 
months after the fiscal yearend date. From Compustat. 

 - Volatility of  
    (SG&A / Total assets) 

Standard deviation of quarterly XSGAQ/AT during the 12 months after the 
fiscal yearend date. From Compustat. 

 - Volatility of  
    (COGS / Total assets) 

Standard deviation of quarterly COGSQ/AT during the 12 months after the 
fiscal yearend date. From Compustat. 

 - Volatility of stock returns Standard deviation of daily stock returns during the 12 months before the 
fiscal yearend date. From CRSP. 

  

Financial policies  
 - Leverage (DLC+DLTT)/AT from Compustat. Small constant added before taking 

logarithm: 0.01. 
 - Cash holdings / Total assets CHE/AT from Compustat. Small constant added before taking logarithm: 

0.01. 
 - Net debt issuance / Total assets (DLCCH+DLTIS-DLTR)/AT from Compustat 
 - Equity issuance / Total assets SSTK/AT from Compustat 
 - Share repurchase / Total assets PRSTKC/AT from Compustat 
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Appendix Table 3 
Example: Top Publicly Traded Firms by AI Patent Grants 

 
This table shows the top 20 publicly traded firms by AI patent grants, along with their AI patent counts and industry 
classification. 
 

AI patent 
counts (annual 

mean) 
Firm SIC3 Industry name 

1,499 IBM 737 Computer programming, data processing, and other computer related 
722 Microsoft 737 Computer programming, data processing, and other computer related 
704 Google 737 Computer programming, data processing, and other computer related 
297 HP 357 Computer and office equipment 
277 GE 351 Engines and turbines 
247 Intel 367 Electronic components and accessories 
240 Facebook 737 Computer programming, data processing, and other computer related 
227 HP 357 Computer and office equipment 
205 Amazon 596 Non-store retailers 
190 Xerox 357 Computer and office equipment 
186 Oracle 737 Computer programming, data processing, and other computer related 
170 AT&T 481 Telephone communications 
158 Apple 366 Communications equipment 
134 Lucent 737 Computer programming, data processing, and other computer related 
131 Sun 357 Computer and office equipment 
130 Qualcomm 367 Electronic components and accessories 
101 Cisco 357 Computer and office equipment 
89 Yahoo 737 Computer programming, data processing, and other computer related 
77 Adobe 737 Computer programming, data processing, and other computer related 
75 Verizon 481 Telephone communications 
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Appendix Table 4 
Example: Top Occupations in, and Top Customer Industries of, the Computer Programming Industry 

 
This table shows, for the computer programming industry (SIC 737), the top 20 occupations (Panel A) and the top 
20 customer industries (Panel B). Industry SIC 737 is chosen because it has the most AI patent grants. 
 

Panel A: Top Occupations in Industry SIC 737 

Employment share (%) Occupation name 
AI exposure 
(percentile) 

15.0 Computer programmers 89 
8.8 Systems analysts 77 
5.1 Computer engineers 86 
4.7 General managers & top executives 79 
4.6 Data entry keyers, except composing 67 
3.3 Secretaries, except legal & medical 83 
3.1 Computer operators, except peripheral equipment 73 
2.9 Engineering, mathematical & natural sciences managers 82 
2.3 Data processing equipment repairers 53 
2.1 General office clerks 80 
2.1 First line supervisors, clerical & administrative 82 
2.0 Bookkeeping, accounting & auditing clerks 82 
2.0 Salespersons, scientific products & services 77 
2.0 Marketing/advertising/public relations managers 91 
1.9 Sales agents, business services 91 
1.9 Electrical & electronic engineers 83 
1.9 Electrical/electronic technicians & technologists 61 
1.8 Computer programmer aides 89 
1.8 Other professional, paraprofessional/technicians 79 
1.5 Other computer scientists & related 81 

Panel B: Top Customer Industries of Industry SIC 737 
Product 

purchase share 
(%) 

SIC3 Industry name 
AI exposure 
(percentile) 

13.2 737 Computer programming, data processing, and other computer related 93 
12.9 602 Commercial banks 92 
12.5 872 Accounting, auditing, and bookkeeping services 100 
5.8 874 Management and public relations services 89 
5.3 735 Miscellaneous equipment rental and leasing 69 
3.8 801 Offices and clinics of doctors of medicine 87 
3.8 603 Savings institutions 93 
2.6 806 Hospitals 66 
2.6 481 Telephone communications 81 
2.6 871 Engineering, architectural, and surveying services 91 
2.1 621 Security brokers, dealers, and flotation companies 99 
1.5 802 Offices and clinics of dentists 65 
1.4 491 Electric services 62 
1.1 451 Air transportation, scheduled, and air courier services 56 
1.1 606 Credit unions 94 
0.8 541 Grocery stores 48 
0.8 272 Periodicals: publishing, or publishing and printing 88 
0.7 633 Fire, marine, and casualty insurance 96 
0.6 631 Life insurance 96 
0.6 822 Colleges, universities, professional schools, and junior colleges 86 

 


